

SDL Game Development

Discover how to leverage the power of SDL 2.0 to
create awesome games in C++

Shaun Ross Mitchell

BIRMINGHAM - MUMBAI

SDL Game Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1170613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-682-1

www.packtpub.com

Cover Image by Shaun Mitchell (shaunmitchell84@googlemail.com)

Credits

Author
Shaun Ross Mitchell

Reviewers
Luka Horvat

Mårten Möller

Acquisition Editor
Edward Gordon

Lead Technical Editor
Savio Jose

Chalini Snega Victor

Technical Editors
Jeeten Handu

Kaustubh S. Mayekar

Anita Nayak

Project Coordinator
Hardik Patel

Proofreader
Bernadette Watkins

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

About the Author

Shaun Mitchell is a developer at a high profile online gaming company. He holds
a BSc in Game Programming and Development from Qantm College / SAE Institute
London. Shaun is also a moderator and active member of the <dream.in.code>
programming community.

I would like to thank Jason Colman, my university lecturer, whose
knowledge and insight into C++ and game programming has been
the foundation of my skillset.

I would also like to thank the <dream.in.code> community for the
interesting discussions and topics to hone my skills with.

Thank you to John Bayly for the background image on the front cover.

Many thanks to my family for their continued support and
importantly, a huge thank you to my girlfriend, Emma, who
tirelessly proofread my chapters while also keeping me running
on a generous amount of caffeine.

About the Reviewers

Luka Horvat is an enthusiastic software and game developer who got fascinated
by computer science in his early years. He chose to study his passion while working
on many different projects and technologies. Throughout the years he gained a lot of
knowledge and experience, and he wanted to share that with others. He is proficient in
many different programming languages, with C++ as his main one; and is passionate
about game development. So he started teaching it and currently manages different
courses for in this area. He continues to pursue his career in computer science by
working on a wide variety of projects and sharing them with others.

I would like to thank my friends and family who helped me produce
this book.

Mårten Möller is an independent game developer who has previously worked at
Imperial Game Studios.

I would like to thank my family and friends. All of you are amazing.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

In memory of my Mum.
You always believed in me.

I miss you everyday.

Table of Contents
Preface	 1
Chapter 1: Getting Started with SDL	 5

Why use SDL?	 6
What is new in SDL 2.0?	 6
Migrating SDL 1.2 extensions	 7

Setting up SDL in Visual C++ Express 2010	 8
Using Mercurial to get SDL 2.0 on Windows	 8

Cloning and building the latest SDL 2.0 repository	 8
I have the library; now what?	 10

Hello SDL	 13
An overview of Hello SDL	 14
SDL initialization flags	 16
SDL renderer flags	 17

What makes up a game	 17
Breaking up the Hello SDL code	 18
What does this code do?	 20

The Game class	 21
Fullscreen SDL	 26

Summary	 28
Chapter 2: Drawing in SDL	 29

Basic SDL drawing	 29
Getting some images	 29
Creating an SDL texture	 30

Source and destination rectangles	 32
Animating a sprite sheet	 35
Flipping images	 37

Installing SDL_image	 38
Using SDL_image	 40

Table of Contents

[ii]

Tying it into the framework	 42
Creating the texture manager	 42
Using texture manager as a singleton	 46

Summary	 47
Chapter 3: Working with Game Objects	 49

Using inheritance	 49
Implementing polymorphism	 55
Using abstract base classes	 60
Should we always use inheritance?	 61

Could the same thing be achieved with a simpler solution?	 61
Derived classes should model the "is a" relationship	 61
Possible performance penalties	 62

Putting it all together	 62
Summary	 67

Chapter 4: Exploring Movement and Input Handling	 69
Setting up game objects for movement	 70

What is a vector?	 70
Some common operations	 72

Addition of two vectors	 72
Multiply by a scalar number	 73
Subtraction of two vectors	 73
Divide by a scalar number	 74
Normalizing a vector	 74

Adding the Vector2D class	 75
Adding velocity	 76
Adding acceleration	 77

Creating fixed frames per second	 77
Input handling	 79

Creating our input handler class	 79
Handling joystick/gamepad input	 80

SDL joystick events	 80
Initializing joysticks	 81

Listening for and handling axis movement	 84
Dealing with joystick button input	 91
Handling mouse events	 93

Using mouse button events	 93
Handling mouse motion events	 95

Implementing keyboard input	 96
Wrapping things up	 98

Summary	 100

Table of Contents

[iii]

Chapter 5: Handling Game States	 101
A simple way for switching states	 101
Implementing finite state machines	 103

A base class for game states	 103
Implementing FSM	 106

Implementing menu states	 110
Function pointers and callback functions	 114
Implementing the temporary play state	 117
Pausing the game	 120
Creating the game over state	 123

Summary	 130
Chapter 6: Data-driven Design	 131

Loading XML files	 131
Basic XML structure	 132

Implementing Object Factories	 134
Using Distributed Factories	 135

Fitting the factory into the framework	 138
Parsing states from an XML file	 140
Loading the menu state from an XML file	 147
Loading other states from an XML file	 150

Loading the play state	 150
Loading the pause state	 152
Loading the game over state	 153

Summary	 155
Chapter 7: Creating and Displaying Tile Maps	 157

What is a tile map?	 158
Getting familiar with the Tiled application	 160
Parsing and drawing a tile map	 165

Creating the TileLayer class	 167
Creating the LevelParser class	 168
Parsing tilesets	 170
Parsing a tile layer	 171
Drawing the map	 175

Scrolling a tile map	 180
Parsing object layers	 182

Developing the ObjectLayer class	 184
Summary	 189

Table of Contents

[iv]

Chapter 8: Creating Alien Attack	 191
Using the SDL_mixer extension for sound	 193

Creating the SoundManager class	 193
Setting up the basic game objects	 196

GameObject revamped	 196
SDLGameObject is now ShooterObject	 199
Player inherits from ShooterObject	 200
Lots of enemy types	 204
Adding a scrolling background	 205

Handling bullets	 207
Two types of bullets	 207
The BulletHandler class	 209

Dealing with collisions	 211
Creating a CollisionManager class	 214

Possible improvements	 216
Summary	 216

Chapter 9: Creating Conan the Caveman	 217
Setting up the basic game objects	 218

No more bullets or bullet collisions	 218
Game objects and map collisions	 219
ShooterObject is now PlatformerObject	 219
The Camera class	 222
Camera-controlled map	 224
The Player class	 225

Possible additions	 231
Summary	 231

Index	 233

Preface
Creating games in C++ is a complicated process requiring a lot of time and
dedication to achieve results. A good foundation of reusable classes can speed
up development time and allow focus to be on creating a great game rather than
struggling with low-level code. This book aims to show an approach to creating a
reusable framework that could be used for any game, whether 2D or 3D.

What this book covers
Chapter 1, Getting started with SDL, covers setting up SDL in Visual C++ 2010 express
and then moves onto the basics of SDL including creating a window and listening for
quit events.

Chapter 2, Drawing in SDL, covers the development of some core drawing classes to
help simplify SDL rendering. The SDL_image extension is also introduced to allow
the loading of a variety of different image file types.

Chapter 3, Working with Game Objects, gives a basic introduction to inheritance and
polymorphism along with the development of a reusable GameObject class that will
be used throughout the rest of the book.

Chapter 4, Exploring Movement and Input Handling, gives a detailed look at handling
events in SDL. Joystick, keyboard, and mouse input are all covered with the
development of reusable classes.

Chapter 5, Handling Game States, covers the design and implementation of a finite
state machine to manage game states. Implementing and moving between different
states is covered in detail.

Chapter 6, Data-driven Design, covers the use of TinyXML to load states. A class to
parse states is developed along with examples for different states.

Preface

[2]

Chapter 7, Creating and Displaying Tile Maps, brings together everything from the
previous chapters to allow the creation of levels using the Tiled map editor. A level
parsing class is created to load maps from an XML file.

Chapter 8, Creating Alien Attack, covers the creation of a 2D side scrolling shooter,
utilizing everything learned in the previous chapters.

Chapter 9, Creating Conan the Caveman, covers the creation of a second game, altering
the code from Alien Attack, showing that the framework is flexible enough to be used
for any 2D game genre.

What you need for this book
To use this book you will need the following software:

•	 Visual C++ 2010 Express
•	 Tiled map editor
•	 TinyXML
•	 zlib library

Who this book is for
This book is aimed at beginner/intermediate C++ programmers who want to take
their existing skills and apply them to creating games in C++. This is not a beginner's
book and you are expected to know the basics of C++, including inheritance,
polymorphism, and class design.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

void Player::update()
{
 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));

Preface

[3]

 m_acceleration.setX(1);

 SDLGameObject::update();
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Right-click on the project and choose Build.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the erratasubmissionform link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with SDL
Simple DirectMedia Layer (SDL) is a cross-platform multimedia library created by
Sam Oscar Latinga. It provides low-level access to input (via mouse, keyboard, and
gamepads/joysticks), 3D hardware, and the 2D video frame buffer. SDL is written
in the C programming language, yet has native support for C++. The library also
has bindings for several other languages such as Pascal, Objective-C, Python, Ruby,
and Java; a full list of supported languages is available at http://www.libsdl.org/
languages.php.

SDL has been used in many commercial games including World of Goo, Neverwinter
Nights, and Second Life. It is also used in emulators such as ZSNES, Mupen64, and
VisualBoyAdvance. Some popular games ported to Linux platforms such as Quake 4,
Soldier of Fortune, and Civilization: Call to Power utilize SDL in some form.

SDL is not just used for games. It is useful for all manner of applications. If your
software needs access to graphics and input, chances are that SDL will be a great
help. The SDL official website has a list of applications that have been created using
the library (http://www.libsdl.org/applications.php).

In this chapter we will cover the following:

•	 Getting the latest SDL build from the Mercurial repository
•	 Building and setting up SDL in Visual C++ 2010 Express
•	 Creating a window with SDL
•	 Implementing a basic game class

Getting Started with SDL

[6]

Why use SDL?
Each platform has its own way of creating and displaying windows and graphics,
handling user input, and accessing any low-level hardware; each one with its own
intricacies and syntax. SDL provides a uniform way of accessing these platform-
specific features. This uniformity leads to more time spent tweaking your game
rather than worrying about how a specific platform allows you to render or get
user input, and so on. Game programming can be quite difficult, and having a
library such as SDL can get your game up and running relatively quickly.

The ability to write a game on Windows and then go on to compile it on OSX or
Linux with little to no changes in the code is extremely powerful and perfect for
developers who want to target as many platforms as possible; SDL makes this
kind of cross-platform development a breeze. While SDL is extremely effective
for cross-platform development, it is also an excellent choice for creating a game
with just one platform in mind, due to its ease of use and abundance of features.

SDL has a large user base and is being actively updated and maintained. There is
also a responsive community along with a helpful mailing list. Documentation for
SDL 2.0 is up-to-date and constantly maintained. Visiting the SDL website, libsdl.
org, offers up lots of articles and information with links to the documentation,
mailing list, and forums.

Overall, SDL offers a great place to start with game development, allowing you to
focus on the game itself and ignore which platform you are developing for, until it is
completely necessary. Now, with SDL 2.0 and the new features it brings to the table,
SDL has become an even more capable library for game development using C++.

The best way to find out what you can do with SDL and its various
functions is to use the documentation found at http://wiki.
libsdl.org/moin.cgi/CategoryAPI. There you can see a list of
all of SDL 2.0's functions along with various code examples.

What is new in SDL 2.0?
The latest version of SDL and SDL 2.0, which we will be covering in this book, is still
in development. It adds many new features to the existing SDL 1.2 framework. The
SDL 2.0 Roadmap (wiki.libsdl.org/moin.cgi/Roadmap) lists these features as:

•	 A 3D accelerated, texture-based rendering API
•	 Hardware-accelerated 2D graphics
•	 Support for render targets

Chapter 1

[7]

•	 Multiple window support
•	 API support for clipboard access
•	 Multiple input device support
•	 Support for 7.1 audio
•	 Multiple audio device support
•	 Force-feedback API for joysticks
•	 Horizontal mouse wheel support
•	 Multitouch input API support
•	 Audio capture support
•	 Improvements to multithreading

While not all of these will be used in our game-programming adventures, some
of them are invaluable and make SDL an even better framework to use to develop
games. We will be taking advantage of the new hardware-accelerated 2D graphics
to make sure our games have excellent performance.

Migrating SDL 1.2 extensions
SDL has separate extensions that can be used to add new capabilities to the library.
The reason these extensions are not included in the first place is to keep SDL as
lightweight as possible, with the extensions serving to add functionality only when
necessary. The next table shows some useful extensions along with their purpose.
These extensions have been updated from their SDL1.2/3 Versions to support
SDL 2.0, and this book will cover cloning and building them from their respective
repositories as and when they are needed.

Name Description
SDL_image This is an image file loading library with support for BMP,

GIF, PNG, TGA, PCX, and among others.
SDL_net This is a cross-platform networking library.
SDL_mixer This is an audio mixer library. It has support for MP3,

MIDI, and OGG.
SDL_ttf This is a library supporting the use of TrueType fonts in

SDL applications.
SDL_rtf This is a library to support the rendering of the Rich Text

Format (RTF).

Getting Started with SDL

[8]

Setting up SDL in Visual C++ Express
2010
This book will cover setting up SDL 2.0 in Microsoft's Visual C++ Express 2010
IDE. This IDE was chosen as it is available for free online, and is a widely used
development environment within the games industry. The application is available
at https://www.microsoft.com/visualstudio/en-gb/express. Once the IDE
has been installed we can go ahead and download SDL 2.0. If you are not using
Windows to develop games, then these instructions can be altered to suit your IDE
of choice using its specific steps to link libraries and include files.

SDL 2.0 is still in development so there are no official releases as yet. The library can
be retrieved in two different ways:

•	 One is to download the under-construction snapshot; you can then link
against this to build your games (the quickest option)

•	 The second option is to clone the latest source using mercurial-distributed
source control and build it from scratch (a good option to keep up with the
latest developments of the library)

Both of these options are available at http://www.libsdl.org/hg.php.

Building SDL 2.0 on Windows also requires the latest DirectX SDK, which
is available at http://www.microsoft.com/en-gb/download/details.
aspx?id=6812, so make sure this is installed first.

Using Mercurial to get SDL 2.0 on Windows
Getting SDL 2.0 directly from the constantly updated repository is the best way of
making sure you have the latest build of SDL 2.0 and that you are taking advantage
of any current bug fixes. To download and build the latest version of SDL 2.0 on
Windows, we must first install a mercurial source control client so that we can mirror
the latest source code and build from it. There are various command-line tools and
GUIs available for use with mercurial. We will use TortoiseHg, a free and user-
friendly mercurial application; it is available at tortoisehg.bitbucket.org. Once
the application is installed, we can go ahead and grab the latest build.

Cloning and building the latest SDL 2.0 repository
Cloning and building the latest version of SDL directly from the repository is
relatively straightforward when following these steps:

1.	 Open up the TortoiseHg Workbench window.

Chapter 1

[9]

2.	 Pressing Ctrl + Shift + N will open the clone dialog box.
3.	 Input the source of the repository; in this case it is listed on the SDL 2.0

website as http://hg.libsdl.org/SDL.
4.	 Input or browse to choose a destination for the cloned repository—this book

will assume that C:\SDL2 is set as the location.
5.	 Click on Clone and allow the repository to copy to the chosen destination.

6.	 Within the C:\SDL2 directory there will be a VisualC folder; inside the folder
there is a Visual C++ 2010 solution, which we have to open with Visual C++
Express 2010.

7.	 Visual C++ Express will throw up a few errors about solution folders not
being supported in the express version, but they can be safely ignored
without affecting our ability to build the library.

Getting Started with SDL

[10]

8.	 Change the current build configuration to release and also choose 32 or 64 bit
depending on your operating system.

9.	 Right-click on the project named SDL listed in the Solution Explorer list and
choose Build.

10.	 We now have a build of the SDL 2.0 library to use. It will be located at C:\
SDL2\VisualC\SDL\Win32(or x64)\Release\SDL.lib.

11.	 We also need to build the SDL main library file, so choose it within the
Solution Explorer list and build it. This file will build to C:\SDL2\VisualC\
SDLmain\Win32(or x64)\Release\SDLmain.lib.

12.	 Create a folder named lib in C:\SDL2 and copy SDL.lib and SDLmain.lib
into this newly created folder.

I have the library; now what?
Now a Visual C++ 2010 project can be created and linked with the SDL library. Here
are the steps involved:

1.	 Create a new empty project in Visual C++ express and give it a name, such as
SDL-game.

2.	 Once created, right-click on the project in the Solution Explorer list and
choose Properties.

Chapter 1

[11]

3.	 Change the configuration drop-down list to All Configurations.
4.	 Under VC++ Directories, click on Include Directories. A small arrow will

allow a drop-down menu; click on <Edit…>.

5.	 Double-click inside the box to create a new location. You can type or browse
to C:\SDL2.0\include and click on OK.

6.	 Next, do the same thing under library directories, this time passing in your
created lib folder (C:\SDL2\lib).

Getting Started with SDL

[12]

7.	 Next, navigate to the Linker heading; inside the heading there will be an
Input choice. Inside Additional Dependencies type SDL.lib SDLmain.lib:

8.	 Navigate to the System heading and set the SubSystem heading to
Windows(/SUBSYSTEM:WINDOWS).

9.	 Click on OK and we are done.

Chapter 1

[13]

Hello SDL
We now have an empty project, which links to the SDL library, so it is time to start
our SDL development. Click on Source Files and use the keyboard shortcut Ctrl +
Shift + A to add a new item. Create a C++ file called main.cpp. After creating this
file, copy the following code into the source file:

#include<SDL.h>

SDL_Window* g_pWindow = 0;
SDL_Renderer* g_pRenderer = 0;

int main(int argc, char* args[])
{
 // initialize SDL
 if(SDL_Init(SDL_INIT_EVERYTHING) >= 0)
 {
 // if succeeded create our window
 g_pWindow = SDL_CreateWindow("Chapter 1: Setting up SDL",
 SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
 640, 480,
 SDL_WINDOW_SHOWN);

 // if the window creation succeeded create our renderer
 if(g_pWindow != 0)
 {
 g_pRenderer = SDL_CreateRenderer(g_pWindow, -1, 0);
 }
 }
 else
 {
 return 1; // sdl could not initialize
 }

 // everything succeeded lets draw the window

 // set to black // This function expects Red, Green, Blue and
 // Alpha as color values
 SDL_SetRenderDrawColor(g_pRenderer, 0, 0, 0, 255);

 // clear the window to black
 SDL_RenderClear(g_pRenderer);

 // show the window

Getting Started with SDL

[14]

 SDL_RenderPresent(g_pRenderer);

 // set a delay before quitting
 SDL_Delay(5000);

 // clean up SDL
 SDL_Quit();

 return 0;
}

We can now attempt to build our first SDL application. Right-click on the project and
choose Build. There will be an error about the SDL.dll file not being found:

The attempted build should have created a Debug or Release folder within the
project directory (usually located in your Documents folder under visual studio and
projects). This folder contains the .exe file from our attempted build; we need to add
the SDL.dll file to this folder. The SDL.dll file is located at C:\SDL2\VisualC\SDL\
Win32 (or x64)\Release\SDL.dll l). When you want to distribute your game to
another computer, you will have to share this file as well as the executable. After you
have added the SDL.dll file to the executable folder, the project will now compile
and show an SDL window; wait for 5 seconds and then close.

An overview of Hello SDL
Let's go through the Hello SDL code:

1.	 First, we included the SDL.h header file so that we have access to all of
SDL's functions:
#include<SDL.h>

2.	 The next step is to create some global variables. One is a pointer to an
SDL_Window function, which will be set using the SDL_CreateWindow
function. The second is a pointer to an SDL_Renderer object; set using
the SDL_CreateRenderer function:
SDL_Window* g_pWindow = 0;
SDL_Renderer* g_pRenderer = 0;

Chapter 1

[15]

3.	 We can now initialize SDL. This example initializes all of SDL's subsystems
using the SDL_INIT_EVERYTHING flag, but this does not always have to be the
case (see SDL initialization flags):
int main(int argc, char* argv[])
{
 // initialize SDL
 if(SDL_Init(SDL_INIT_EVERYTHING) >= 0)
 {

4.	 If the SDL initialization was successful, we can create the pointer to our
window. SDL_CreateWindow returns a pointer to a window matching the
passed parameters. The parameters are the window title, x position of the
window, y position of the window, width, height, and any required SDL_
flags (we will cover these later in the chapter). SDL_WINDOWPOS_CENTERED
will center our window relative to the screen:
// if succeeded create our window
g_pWindow = SDL_CreateWindow("Chapter 1: Setting up SDL", SDL_
WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, 640, 480, SDL_WINDOW_
SHOWN);

5.	 We can now check whether the window creation was successful, and if so,
move on to set the pointer to our renderer, passing the window we want the
renderer to use as a parameter; in our case, it is the newly created g_pWindow
pointer. The second parameter passed is the index of the rendering driver
to initialize; in this case, we use -1 to use the first capable driver. The final
parameter is SDL_RendererFlag (see SDL renderer flags):
// if the window creation succeeded create our renderer
if(g_pWindow != 0)
{
 g_pRenderer = SDL_CreateRenderer(g_pWindow, -1, 0);
}
else
{
 return 1; // sdl could not initialize
}

6.	 If everything was successful, we can now create and show our window:

// everything succeeded lets draw the window

 // set to black
SDL_SetRenderDrawColor(g_pRenderer, 0, 0, 0, 255);

Getting Started with SDL

[16]

 // clear the window to black
SDL_RenderClear(g_pRenderer);

 // show the window
SDL_RenderPresent(g_pRenderer);

 // set a delay before quitting
SDL_Delay(5000);

 // clean up SDL
SDL_Quit();

SDL initialization flags
Event handling, file I/O, and threading subsystems are all initialized by default in
SDL. Other subsystems can be initialized using the following flags:

Flag Initialized subsystem(s)
SDL_INIT_HAPTIC Force feedback subsystem
SDL_INIT_AUDIO Audio subsystem
SDL_INIT_VIDEO Video subsystem
SDL_INIT_TIMER Timer subsystem
SDL_INIT_JOYSTICK Joystick subsystem
SDL_INIT_EVERYTHING All subsystems
SDL_INIT_NOPARACHUTE Don't catch fatal signals

We can also use bitwise (|) to initialize more than one subsystem. To initialize only
the audio and video subsystems, we can use a call to SDL_Init, for example:

SDL_Init(SDL_INIT_AUDIO | SDL_INIT_VIDEO);

Checking whether a subsystem has been initialized or not can be done with a call to
the SDL_WasInit() function:

if(SDL_WasInit(SDL_INIT_VIDEO) != 0)
{
 cout << "video was initialized";
}

Chapter 1

[17]

SDL renderer flags
When initializing an SDL_Renderer flag, we can pass in a flag to determine its
behavior. The following table describes each flag's purpose:

Flag Purpose
SDL_RENDERER_SOFTWARE Use software rendering
SDL_RENDERER_ACCELERATED Use hardware acceleration
SDL_RENDERER_PRESENTVSYNC Synchronize renderer update with

screen's refresh rate
SDL_RENDERER_TARGETTEXTURE Supports render to texture

What makes up a game
Outside the design and gameplay of a game, the underlying mechanics are
essentially the interaction of various subsystems such as graphics, game logic,
and user input. The graphics subsystem should not know how the game logic
is implemented or vice versa. We can think of the structure of a game as follows:

Once the game is initialized, it then goes into a loop of checking for user input,
updating any values based on the game physics, before rendering to the screen.
Once the user chooses to exit, the loop is broken and the game moves onto cleaning
everything up and exiting. This is the basic scaffold for a game and it is what will
be used in this book.

Getting Started with SDL

[18]

We will be building a reusable framework that will take all of the legwork out of
creating a game in SDL 2.0. When it comes to boilerplate code and setup code, we
really only want to write it once and then reuse it within new projects. The same can
be done with drawing code, event handling, map loading, game states, and anything
else that all games may require. We will start by breaking up the Hello SDL 2.0
example into separate parts. This will help us to start thinking about how code can
be broken into reusable standalone chunks rather than packing everything into one
large file.

Breaking up the Hello SDL code
We can break up the Hello SDL into separate functions:

bool g_bRunning = false; // this will create a loop

Follow these steps to break the Hello SDL code:

1.	 Create an init function after the two global variables that takes any
necessary values as parameters and passes them to the SDL_CreateWindow
function:
bool init(const char* title, int xpos, int ypos, int
height, int width, int flags)
{
 // initialize SDL
 if(SDL_Init(SDL_INIT_EVERYTHING) >= 0)
 {
 // if succeeded create our window
 g_pWindow = SDL_CreateWindow(title, xpos, ypos,
 height, width, flags);

 // if the window creation succeeded create our
 renderer
 if(g_pWindow != 0)
 {
 g_pRenderer = SDL_CreateRenderer(g_pWindow, -1, 0);
 }
 }
 else
 {
 return false; // sdl could not initialize
 }

 return true;

Chapter 1

[19]

}

void render()
{
 // set to black
 SDL_SetRenderDrawColor(g_pRenderer, 0, 0, 0, 255);

 // clear the window to black
 SDL_RenderClear(g_pRenderer);

 // show the window
 SDL_RenderPresent(g_pRenderer);
}

2.	 Our main function can now use these functions to initialize SDL:
int main(int argc, char* argv[])
{
 if(init("Chapter 1: Setting up SDL",
 SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, 640,
 480, SDL_WINDOW_SHOWN))
 {
 g_bRunning = true;
 }
 else
 {
 return 1; // something's wrong
 }

 while(g_bRunning)
 {
 render();
 }

 // clean up SDL
 SDL_Quit();

 return 0;
}

As you can see, we have broken the code up into separate parts: one function does
the initialization for us and the other does the rendering code. We've added a way
to keep the program running in the form of a while loop that runs continuously,
rendering our window.

Getting Started with SDL

[20]

Let's take it a step further and try to identify which separate parts a full game might
have and how our main loop might look. Referring to the first screenshot, we can see
that the functions we will need are initialize, get input, do physics, render,
and exit. We will generalize these functions slightly and rename them to init(),
handleEvents(), update(), render(), and clean(). Let's put these functions into
main.cpp:

void init(){}
void render(){}
void update(){}
void handleEvents(){}
void clean(){}

bool g_bRunning = true;

int main()
{
 init();

 while(g_bRunning)
 {
 handleEvents();
 update();
 render();
 }

 clean();
}

What does this code do?
This code does not do much at the moment, but it shows the bare bones of a game
and how a main loop might be broken apart. We declare some functions that can be
used to run our game: first, the init() function, which will initialize SDL and create
our window, and second, we declare the core loop functions of render, update, and
handle events. We also declare a clean function, which will clean up code at the
end of our game. We want this loop to continue running so we have a Boolean value
that is set to true, so that we can continuously call our core loop functions.

Chapter 1

[21]

The Game class
So, now that we have an idea of what makes up a game, we can separate the
functions into their own class by following these steps:

1.	 Go ahead and create a new file in the project called Game.h:
#ifndef __Game__
#define __Game__

class Game
{
};

#endif /* defined(__Game__) */

2.	 Next, we can move our functions from the main.cpp file into the Game.h
header file:
class Game
{
public:

 Game() {}
 ~Game() {}

 // simply set the running variable to true
 void init() { m_bRunning = true; }

 void render(){}
 void update(){}
 void handleEvents(){}
 void clean(){}

 // a function to access the private running variable
 bool running() { return m_bRunning; }

private:

 bool m_bRunning;
};

Getting Started with SDL

[22]

3.	 Now, we can alter the main.cpp file to use this new Game class:
#include "Game.h"

// our Game object
Game* g_game = 0;

int main(int argc, char* argv[])
{
 g_game = new Game();

 g_game->init("Chapter 1", 100, 100, 640, 480, 0);

 while(g_game->running())
 {
 g_game->handleEvents();
 g_game->update();
 g_game->render();
 }
 g_game->clean();

 return 0;
}

Our main.cpp file now does not declare or define any of these functions; it
simply creates an instance of Game and calls the needed methods.

4.	 Now that we have this skeleton code, we can go ahead and tie SDL into it to
create a window; we will also add a small event handler so that we can exit
the application rather than having to force it to quit. We will slightly alter our
Game.h file to allow us to add some SDL specifics and to also allow us to use
an implementation file instead of defining functions in the header:

#include "SDL.h"

class Game
{
public:

 Game();
 ~Game();

 void init();

 void render();

Chapter 1

[23]

 void update();
 void handleEvents();
 void clean();

 bool running() { return m_bRunning; }

private:

 SDL_Window* m_pWindow;
 SDL_Renderer* m_pRenderer;

 bool m_bRunning;
};

Looking back at the first part of this chapter (where we created an SDL window),
we know that we need a pointer to an SDL_Window object that is set when calling
SDL_CreateWindow, and a pointer to an SDL_Renderer object that is created by
passing our window into SDL_CreateRenderer. The init function can be extended
to use the same parameters as in the initial sample as well. This function will now
return a Boolean value so that we can check whether SDL is initialized correctly:

bool init(const char* title, int xpos, int ypos, int width, int
height, int flags);

We can now create a new implementation Game.cpp file in the project so that we
can create the definitions for these functions. We can take the code from the Hello
SDL section and add it to the functions in our new Game class.

Open up Game.cpp and we can begin adding some functionality:

1.	 First, we must include our Game.h header file:
#include "Game.h"

2.	 Next, we can define our init function; it is essentially the same as the init
function we have previously written in our main.cpp file:
bool Game::init(const char* title, int xpos, int ypos, int width,
int height, int flags)
{
 // attempt to initialize SDL
 if(SDL_Init(SDL_INIT_EVERYTHING) == 0)
 {
 std::cout << "SDL init success\n";
 // init the window
 m_pWindow = SDL_CreateWindow(title, xpos, ypos,
 width, height, flags);

Getting Started with SDL

[24]

 if(m_pWindow != 0) // window init success
 {
 std::cout << "window creation success\n";
 m_pRenderer = SDL_CreateRenderer(m_pWindow, -1, 0);

 if(m_pRenderer != 0) // renderer init success
 {
 std::cout << "renderer creation success\n";
 SDL_SetRenderDrawColor(m_pRenderer,
 255,255,255,255);
 }
 else
 {
 std::cout << "renderer init fail\n";
 return false; // renderer init fail
 }
 }
 else
 {
 std::cout << "window init fail\n";
 return false; // window init fail
 }
 }
 else
 {
 std::cout << "SDL init fail\n";
 return false; // SDL init fail
 }

 std::cout << "init success\n";
 m_bRunning = true; // everything inited successfully,
 start the main loop

 return true;
}

3.	 We will also define the render function. It clears the renderer and then
renders again with the clear color:
void Game::render()
{
 SDL_RenderClear(m_pRenderer); // clear the renderer to
 the draw color

 SDL_RenderPresent(m_pRenderer); // draw to the screen
}

Chapter 1

[25]

4.	 Finally, we can clean up. We destroy both the window and the renderer and
also call the SDL_Quit function to close all the subsystems:
{
 std::cout << "cleaning game\n";
 SDL_DestroyWindow(m_pWindow);
 SDL_DestroyRenderer(m_pRenderer);
 SDL_Quit();
}

So we have moved the Hello SDL 2.0 code from the main.cpp file into a class
called Game. We have freed up the main.cpp file to handle only the Game class; it
knows nothing about SDL or how the Game class is implemented. Let's add one
more thing to the class to allow us to close the application the regular way:

void Game::handleEvents()
{
 SDL_Event event;
 if(SDL_PollEvent(&event))
 {
 switch (event.type)
 {
 case SDL_QUIT:
 m_bRunning = false;
 break;

 default:
 break;
 }
 }
}

We will cover event handling in more detail in a forthcoming chapter. What this
function now does is check if there is an event to handle, and if so, check if it is an
SDL_QUIT event (by clicking on the cross to close a window). If the event is SDL_
QUIT, we set the Game class' m_bRunning member variable to false. The act of
setting this variable to false makes the main loop stop and the application move
onto cleaning up and then exiting:

void Game::clean()
{
 std::cout << "cleaning game\n";
 SDL_DestroyWindow(m_pWindow);
 SDL_DestroyRenderer(m_pRenderer);
 SDL_Quit();
}

Getting Started with SDL

[26]

The clean() function destroys the window and renderer and then calls the SDL_
Quit() function, closing all the initialized SDL subsystems.

To enable us to view our std::cout messages, we must first include
Windows.h and then call AllocConsole(); andfreopen("CON",
"w", stdout);. You can do this in the main.cpp file. Just remember
to remove it when sharing your game.

Fullscreen SDL
SDL_CreateWindow takes an enumeration value of type SDL_WindowFlags. These
values set how the window will behave. We created an init function in our Game
class:

bool init(const char* title, int xpos, int ypos, int width, int
height, int flags);

The final parameter is an SDL_WindowFlags value, which is then passed into the
SDL_CreateWindow function when initializing:

// init the window
m_pWindow = SDL_CreateWindow(title, xpos, ypos, width, height, flags);

Here is a table of the SDL_WindowFlags function:

Flag Purpose
SDL_WINDOW_FULLSCREEN Make the window fullscreen
SDL_WINDOW_OPENGL Window can be used with as an OpenGL

context
SDL_WINDOW_SHOWN The window is visible
SDL_WINDOW_HIDDEN Hide the window
SDL_WINDOW_BORDERLESS No border on the window
SDL_WINDOW_RESIZABLE Enable resizing of the window
SDL_WINDOW_MINIMIZED Minimize the window
SDL_WINDOW_MAXIMIZED Maximize the window
SDL_WINDOW_INPUT_GRABBED Window has grabbed input focus
SDL_WINDOW_INPUT_FOCUS Window has input focus
SDL_WINDOW_MOUSE_FOCUS Window has mouse focus
SDL_WINDOW_FOREIGN The window was not created using SDL

Chapter 1

[27]

Let's pass in SDL_WINDOW_FULLSCREEN to the init function and test out some
fullscreen SDL. Open up the main.cpp file and add this flag:

g_game->init("Chapter 1", 100, 100, 640, 580, SDL_WINDOW_FULLSCREEN))

Build the application again and you should see that the window is fullscreen. To
exit the application, it will have to be forced to quit (Alt + F4 on Windows); we will
be able to use the keyboard to quit the application in forthcoming chapters, but for
now, we won't need fullscreen. One problem we have here is that we have now
added something SDL specific to the main.cpp file. While we will not use any other
frameworks in this book, in future we may want to use another. We can remove this
SDL-specific flag and replace it with a Boolean value for whether we want fullscreen
or not.

Replace the int flags parameter in our Game init function with a
boolfullscreen parameter:

•	 The code snippet for Game.h:
bool init(const char* title, int xpos, int ypos, int width, int
height, bool fullscreen);

•	 The code snippet for Game.cpp:

bool Game::init(const char* title, int xpos, int ypos, int width,
int height, bool fullscreen)
{
 int flags = 0;

 if(fullscreen)
 {
 flags = SDL_WINDOW_FULLSCREEN;
 }
}

We create an int flags variable to pass into the SDL_CreateWindow function; if
we have set fullscreen to true, then this value will be set to the SDL_WINDOW_
FULLSCREEN flag, otherwise it will remain as 0 to signify that no flags are being used.
Let's test this now in our main.cpp file:

if(g_game->init("Chapter 1", 100, 100, 640, 480, true))

This will again set our window to fullscreen, but we aren't using the SDL-specific
flag to do it. Set it to false again as we will not need fullscreen for a while. Feel free
to try out a few of the other flags to see what effects they have.

Getting Started with SDL

[28]

Summary
A lot of ground has been covered in this chapter. We learned what SDL is and why
it is a great tool for game development. We looked at the overall structure of a
game and how it can be broken into individual parts, and we started to develop the
skeleton of our framework by creating a Game class that can be used to initialize SDL
and render things to the screen. We also had a small look at how SDL handles events
by listening for a quit event to close our application. In the next chapter we will look
at drawing in SDL and building the SDL_image extension.

Drawing in SDL
Graphics are very important to games and they can also be one of the main
performance bottlenecks if not handled correctly. With SDL 2.0 we can really take
advantage of the GPU when rendering, which gives us a real boost in terms of the
speed of rendering.

In this chapter we will cover:

•	 The basics of drawing with SDL
•	 Source and destination rectangles
•	 Loading and displaying textures
•	 Using the SDL_image extension

Basic SDL drawing
In the previous chapter we created an SDL window but we have yet to render
anything to the screen. SDL can use two structures to draw to the screen. One is
the SDL_Surface structure, which contains a collection of pixels and is rendered
using software rendering processes (not the GPU). The other is SDL_Texture; this
can be used for hardware-accelerated rendering. We want our games to be
as efficient as possible so we will focus on using SDL_Texture.

Getting some images
We need some images to load throughout this chapter. We do not want to spend
any time creating art assets for our games at this point; we want to focus entirely
on the programming side. In this book we will use assets from the SpriteLib
collection available at http://www.widgetworx.com/widgetworx/portfolio/
spritelib.html.

Drawing in SDL

[30]

I have altered some of these files to allow us to easily use them in the upcoming
chapters. These images are available with the source code download for this book.
The first one we will use is the rider.bmp image file:

Creating an SDL texture
First we will create a pointer to an SDL_Texture object as a member variable in our
Game.h header file. We will also create some rectangles to be used when drawing
the texture.

SDL_Window* m_pWindow;
SDL_Renderer* m_pRenderer;

SDL_Texture* m_pTexture; // the new SDL_Texture variable
SDL_Rect m_sourceRectangle; // the first rectangle
SDL_Rect m_destinationRectangle; // another rectangle

We can load this texture in our game's init function for now. Open up Game.cpp
and follow the steps to load and draw an SDL_Texture:

1.	 First we will make an assets folder to hold our images, place this in the
same folder as your source code (not the executable code). When you want
to distribute the game you will copy this assets folder along with your
executable. But for development purposes we will keep it in the same folder
as the source code. Place the rider.bmp file into this assets folder.

2.	 In our game's init function we can load our image. We will use the
SDL_LoadBMP function which returns an SDL_Surface*. From this
SDL_Surface* we can create SDL_Texture structure using the SDL_
CreateTextureFromSurface function. We then free the temporary surface,
releasing any used memory.
SDL_Surface* pTempSurface = SDL_LoadBMP("assets/rider.bmp");

m_pTexture = SDL_CreateTextureFromSurface(m_pRenderer,
pTempSurface);

SDL_FreeSurface(pTempSurface);

Chapter 2

[31]

3.	 We now have SDL_Texture ready to be drawn to the screen. We will first get
the dimensions of the texture we have just loaded, and use them to set the
width and height of m_sourceRectangle so that we can draw it correctly.
SDL_QueryTexture(m_pTexture, NULL, NULL,
&m_sourceRectangle.w, &m_sourceRectangle.h);

4.	 Querying the texture will allow us to set the width and height of our source
rectangle to the exact dimensions needed. So now that we have the correct
height and width of our texture stored in m_sourceRectangle we must also
set the destination rectangle's height and width. This is done so that our
renderer knows which part of the window to draw our image to, and also the
width and height of the image we want to render. We will set both x and y
coordinates to 0 (top left). Window coordinates can be represented with an x
and y value, with x being the horizontal position and y the vertical. Therefore
the coordinates for the top-left of a window in SDL would be (0,0) and the
center point would be the width of the window divided by two for x, and the
height of the window divided by two for y.
m_destinationRectangle.x = m_sourceRectangle.x = 0;
m_destinationRectangle.y = m_sourceRectangle.y = 0;
m_destinationRectangle.w = m_sourceRectangle.w;
m_destinationRectangle.h = m_sourceRectangle.h;

5.	 Now that we have a loaded texture and its dimensions, we can move on to
rendering it to the screen. Move to our game's render function and we will
add the code to draw our texture. Put this function between the calls to SDL_
RenderClear and SDL_RenderPresent.
SDL_RenderCopy(m_pRenderer, m_pTexture, &m_sourceRectangle,
&m_destinationRectangle);

6.	 Build the project and you will see our loaded texture.

Drawing in SDL

[32]

Source and destination rectangles
Now that we have something drawn to the screen, it is a good idea to cover the
purpose of source and destination rectangles, as they will be extremely important for
topics such as tile map loading and drawing. They are also important for sprite sheet
animation which we will be covering later in this chapter.

We can think of a source rectangle as defining the area we want to copy from a
texture onto the window:

1.	 In the previous example, we used the entire image so we could simply define
the source rectangle's dimensions with the same dimensions as those of the
loaded texture.

2.	 The red box in the preceding screenshot is a visual representation of the
source rectangle we used when drawing to the screen. We want to copy
pixels from inside the source rectangle to a specific area of the renderer,
the destination rectangle (the red box in the following screenshot).

3.	 As you would expect, these rectangles can be defined however you wish.
For example, let's open up our Game.cpp file again and take a look at
changing the size of the source rectangle. Place this code after the SDL_
QueryTexture function.

Chapter 2

[33]

m_sourceRectangle.w = 50;
m_sourceRectangle.h = 50;

Now build again and you should see that only a 50 x 50 square of the image
has been copied across to the renderer.

4.	 Now let us move the destination rectangle by changing its x and y values.
m_destinationRectangle.x = 100;
m_destinationRectangle.y = 100;

Build the project again and you will see that our source rectangle location
has remained the same but the destination rectangle has moved. All we have
done is move the location that we want the pixels inside the source rectangle
to be copied to.

Drawing in SDL

[34]

5.	 So far we have left the source rectangle's x and y coordinates at 0 but they
can also be moved around to only draw the section of the image that you
want. We can move the x and y coordinates of the source to draw the
bottom-right section of the image rather than the top-left. Place this code
just before where we set the destination rectangle's location.
m_sourceRectangle.x = 50;
m_sourceRectangle.y = 50;

You can see that we are still drawing to the same destination location but
we are copying a different 50 x 50 section of the image.

6.	 We can also pass null into the render copy for either rectangle.
SDL_RenderCopy(m_pRenderer, m_pTexture, 0, 0);

Passing null into the source rectangle parameter will make the renderer
use the entire texture. Likewise, passing null to the destination rectangle
parameter will use the entire renderer for display.

Chapter 2

[35]

We have covered a few different ways that we can use rectangles to define areas of
images that we would like to draw. We will now put that knowledge into practice by
displaying an animated sprite sheet.

Animating a sprite sheet
We can apply our understanding of source and destination rectangles to the
animation of a sprite sheet. A sprite sheet is a series of animation frames all put
together into one image. The separate frames need to have a very specific width
and height so that they create a seamless motion. If one part of the sprite sheet is
not correct it will make the whole animation look out of place or completely wrong.
Here is an example sprite sheet that we will use for this demonstration:

1.	 This animation is six frames long and each frame is 128 x 82 pixels. We know
from the previous section that we can use a source rectangle to grab a certain
part of an image. Therefore we can start by defining a source rectangle that
encompasses the first frame of the animation only.

Drawing in SDL

[36]

2.	 Since we know the width, height, and location of the frame on the sprite
sheet we can go ahead and hardcode these values into our source rectangle.
First we must load the new animate.bmp file. Place it into your assets folder
and alter the loading code.
SDL_Surface* pTempSurface =
SDL_LoadBMP("assets/animate.bmp");

3.	 This will now load our new sprite sheet BMP. We can remove the SDL_
QueryTexture function as we are now defining our own sizes. Alter the
size of the source rectangle to only get the first frame of the sheet.
m_sourceRectangle.w = 128;
m_sourceRectangle.h = 82;

4.	 We will leave the x and y position of both rectangles at 0 so that we draw the
image from the top-left corner and also copy it to the top-left corner of the
renderer. We will also leave the dimensions of the destination rectangle as
we want it to remain the same as the source rectangle. Pass both rectangles
into the SDL_RenderCopy function:
SDL_RenderCopy(m_pRenderer, m_pTexture, &m_sourceRectangle,
&m_destinationRectangle);

Now when we build we will have the first frame of the animation.

Chapter 2

[37]

5.	 Now that we have the first frame, we can move on to animating the sprite
sheet. Each frame has the exact same dimensions. This is extremely important
for this sheet to animate correctly. All we want to do is move the location of
the source rectangle, not its dimensions.

6.	 Every time we want to move another frame, we simply move the location of
the source rectangle and copy it to the renderer. To do this we will use our
update function.
void Game::update()
{
 m_sourceRectangle.x = 128 * int(((SDL_GetTicks() / 100) % 6));
}

7.	 Here we have used SDL_GetTicks() to find out the amount of milliseconds
since SDL was initialized. We then divide this by the amount of time (in
ms) we want between frames and then use the modulo operator to keep
it in range of the amount of frames we have in our animation. This code
will (every 100 milliseconds) shift the x value of our source rectangle by
128 pixels (the width of a frame), multiplied by the current frame we want,
giving us the correct position. Build the project and you should see the
animation displayed.

Flipping images
In most games, players, enemies, and so on, will move in more than one direction.
To allow the sprite to face in the direction it is moving we will have to flip our sprite
sheet. We could of course create a new row in our sprite sheet with the frames
flipped, but this would use more memory, which we do not want. SDL 2.0 has
another render function that allows us to pass in the way we want our image to be
flipped or rotated. The function we will use is SDL_RenderCopyEx. This function
takes the same parameters as SDL_RenderCopy but also takes specific parameters
for rotation and flipping. The fourth parameter is the angle we want the image to be
displayed with parameter five being the center point we want for the rotation. The
final parameter is an enumerated type called SDL_RendererFlip.

Drawing in SDL

[38]

The following table shows the available values for the SDL_RendererFlip
enumerated type:

SDL_RendererFlip value Purpose
SDL_FLIP_NONE No flipping
SDL_FLIP_HORIZONTAL Flip the texture horizontally
SDL_FLIP_VERTICAL Flip the texture vertically

We can use this parameter to flip our image. Here is the revised render function:

void Game::render()
{
 SDL_RenderClear(m_pRenderer);

 SDL_RenderCopyEx(m_pRenderer, m_pTexture,
 &m_sourceRectangle, &m_destinationRectangle,
 0, 0, SDL_FLIP_HORIZONTAL); // pass in the horizontal flip

 SDL_RenderPresent(m_pRenderer);
}

Build the project and you will see that the image has been flipped and is now
facing to the left. Our characters and enemies will also have frames specifically for
animations such as attack and jump. These can be added to different rows of the
sprite sheet and the source rectangle's y value is incremented accordingly. (We will
cover this in more detail when we create our game objects.)

Installing SDL_image
So far we have only been loading BMP image files. This is all that SDL supports
without any extensions. We can use SDL_image to enable us to load many different
image file types such as BMP, GIF, JPEG, LBM, PCX, PNG, PNM, TGA, TIFF, WEBP,
XCF, XPM, and XV. First we will need to clone the latest build of SDL_image to
ensure it will work with SDL 2.0:

1.	 Open up the TortoiseHg workbench and use Ctrl + Shift + N to clone a
new repository.

2.	 The repository for SDL_image is listed on http://www.libsdl.org/
projects/SDL_image/ and http://hg.libsdl.org/SDL_image/.
So let's go ahead and type that into the Source box.

Chapter 2

[39]

3.	 Our destination will be a new directory, C:\SDL2_image. After typing this
into the Destination box, hit clone and wait for it to complete.

4.	 Once you have created this folder, navigate to our C:\SDL2_image cloned
repository. Open up the VisualC folder and then open the SDL_image_
VS2010 VC++ project with Visual Studio 2010 express.

5.	 Right-click on the SDL2_image project and then click on Properties. Here
we have to include the SDL.h header file. Change the configuration to
All Configurations, navigate to VC++ Directories, click on the Include
Directories drop-down, and then on <Edit…>. Here we can put in our C:\
SDL2\include\ directory.

6.	 Next move to Library Directories and add our C:\SDL2\lib\ folder. Now
navigate to Linker | Input | Additional Dependencies and add SDL2.lib.

7.	 Click on OK and we are almost ready to build. We are now using SDL2.
lib, so we can remove the SDL.lib and the SDLmain.lib files from the SDL_
image project. Locate the files in the solution explorer, right-click and then
remove the files. Change the build configuration to release and then build.

8.	 An error about being unable to start the program may appear. Just click on
OK and we can close the project and continue.

9.	 There will now be a Release folder inside our C:\SDL2_image\VisualC\
folder. Open it and copy the SDL_image.dll to our game's executable folder.

10.	 Next copy the SDL2_image.lib file into our original C:\SDL2\lib\
directory. Also copy the SDL_image header from C:\SDL2_image\ to the C:\
SDL2\include\ directory.

11.	 We just have a few more libraries to get and we are done. Download the
SDL_image-1.2.12-win32.zip file (or the x64 if you are targeting a 64 bit
platform) from http://www.libsdl.org/projects/SDL_image/. Extract all
and then copy all of the .dll files apart from SDL_image.dll into our game's
executable folder.

Drawing in SDL

[40]

12.	 Open up our game project and go into its properties. Navigate to Linker |
Input | Additional Dependencies and add SDL2_image.lib.

13.	 We have now installed SDL_image and can start to load all kinds of different
image files. Copy the animate.png and animate-alpha.png images from
the source downloads to our games assets folder and we can start loading
PNG files.

Using SDL_image
So we have the library installed, now how do we use it? It is simple to use SDL_
image in place of the regular SDL image loading. In our case we only need to replace
one function and also add #include <SDL_image.h>.

SDL_Surface* pTempSurface = SDL_LoadBMP("assets/animate.bmp");

The preceding code will be changed as follows:

SDL_Surface* pTempSurface = IMG_Load("assets/animate.png");

We are now loading a .png image. PNG files are great to work with, they have
a small file size and support an alpha channel. Let's perform a test. Change our
renderer clear color to red.

SDL_SetRenderDrawColor(m_pRenderer, 255,0,0,255);

You will see that we still have our black background from the image we are using;
this is definitely not ideal for our purposes.

Chapter 2

[41]

When using PNG files, we can resolve this by using an alpha channel. We remove
the background from the image and then when we load it, SDL will not draw
anything from the alpha channel.

Let's load this image and see how it looks:

SDL_Surface* pTempSurface = IMG_Load("assets/animate-alpha.png");

This is exactly what we want:

Drawing in SDL

[42]

Tying it into the framework
We have covered a lot on the subject of drawing images with SDL but we have yet to
tie everything together into our framework so that it becomes reusable throughout
our game. What we will now cover is creating a texture manager class that will have
all of the functions we need to easily load and draw textures.

Creating the texture manager
The texture manager will have functions that allow us to load and create an SDL_
Texture structure from an image file, draw the texture (either static or animated),
and also hold a list of SDL_Texture*, so that we can use them whenever we need to.
Let's go ahead and create the TextureManager.h file:

1.	 First we declare our load function. As parameters, the function takes the
filename of the image we want to use, the ID we want to use to refer to the
texture, and the renderer we want to use.
bool load(std::string fileName,std::string id,
SDL_Renderer* pRenderer);

2.	 We will create two draw functions, draw and drawFrame. They will both take
the ID of the texture we want to draw, the x and y position we want to draw
to, the height and width of the frame or the image we are using, the renderer
we will copy to, and an SDL_RendererFlip value to describe how we want
the image to be displayed (default is SDL_FLIP_NONE). The drawFrame
function will take two additional parameters, the current frame we want to
draw and which row it is on in the sprite sheet.
// draw
void draw(std::string id, int x, int y, int width, int
height, SDL_Renderer* pRenderer, SDL_RendererFlip flip =
SDL_FLIP_NONE);

// drawframe

void drawFrame(std::string id, int x, int y, int width, int
height, int currentRow, int currentFrame, SDL_Renderer*
pRenderer, SDL_RendererFlip flip = SDL_FLIP_NONE);

3.	 The TextureManager class will also contain std::map of pointers to the SDL_
Texture objects, keyed using std::strings.
std::map<std::string, SDL_Texture*> m_textureMap;

Chapter 2

[43]

4.	 We now must define these functions in a TextureManager.cpp file. Let's
start with the load function. We will take the code from our previous texture
loading and use it within this load method.
bool TextureManager::load(std::string fileName, std::string
id, SDL_Renderer* pRenderer)
{
 SDL_Surface* pTempSurface = IMG_Load(fileName.c_str());

 if(pTempSurface == 0)
 {
 return false;
 }

 SDL_Texture* pTexture =
 SDL_CreateTextureFromSurface(pRenderer, pTempSurface);

 SDL_FreeSurface(pTempSurface);

 // everything went ok, add the texture to our list
 if(pTexture != 0)
 {
 m_textureMap[id] = pTexture;
 return true;
 }

 // reaching here means something went wrong
 return false;
}

5.	 When we call this function we will then have SDL_Texture that can be
used by accessing it from the map using its ID; we will use this in our draw
functions. The draw function can be defined as follows:
void TextureManager::draw(std::string id, int x, int y, int
width, int height, SDL_Renderer* pRenderer,
SDL_RendererFlip flip)
{
 SDL_Rect srcRect;
 SDL_Rect destRect;

 srcRect.x = 0;
 srcRect.y = 0;
 srcRect.w = destRect.w = width;

Drawing in SDL

[44]

 srcRect.h = destRect.h = height;
 destRect.x = x;
 destRect.y = y;

 SDL_RenderCopyEx(pRenderer, m_textureMap[id], &srcRect,
 &destRect, 0, 0, flip);
}

6.	 We again use SDL_RenderCopyEx using the passed in ID variable to get
the SDL_Texture object we want to draw. We also build our source and
destination variables using the passed in x, y, width, and height values.
Now we can move onto drawFrame:
void TextureManager::drawFrame(std::string id, int x, int y, int
width, int height, int currentRow, int currentFrame, SDL_Renderer
*pRenderer, SDL_RendererFlip flip)
{
 SDL_Rect srcRect;
 SDL_Rect destRect;
 srcRect.x = width * currentFrame;
 srcRect.y = height * (currentRow - 1);
 srcRect.w = destRect.w = width;
 srcRect.h = destRect.h = height;
 destRect.x = x;
 destRect.y = y;

 SDL_RenderCopyEx(pRenderer, m_textureMap[id], &srcRect,
 &destRect, 0, 0, flip);
}

In this function, we create a source rectangle to use the appropriate frame
of the animation using the currentFrame and currentRow variables. The
source rectangle's x position for the current frame is the width of the source
rectangle multiplied by the currentFrame value (covered in the Animating
a sprite sheet section). Its y value is the height of the rectangle multiplied by
currentRow – 1 (it sounds more natural to use the first row, rather than the
zeroth row).

7.	 We now have everything we need to easily load and draw textures throughout
our game. Let's go ahead and test it out using the animated.png image. Open
up Game.h. We will not need our texture member variables or the rectangles
anymore, so delete any of the code dealing with them from the Game.h and
Game.cpp files. We will however create two new member variables.
int m_currentFrame;
TextureManager m_textureManager;

Chapter 2

[45]

8.	 We will use the m_currentFrame variable to allow us to animate our sprite
sheet and we also need an instance of our new TextureManager class (ensure
you include TextureManager.h). We can now load a texture in the game's
init function.
m_textureManager.load("assets/animate-alpha.png",
"animate", m_pRenderer);

9.	 We have given this texture an ID of "animate" which we can use in our draw
functions. We will start by drawing a static image at 0,0 and an animated
image at 100,100. Here is the render function:
void Game::render()
{

 SDL_RenderClear(m_pRenderer);

 m_textureManager.draw("animate", 0,0, 128, 82,
 m_pRenderer);

 m_textureManager.drawFrame("animate", 100,100, 128, 82,
 1, m_currentFrame, m_pRenderer);

 SDL_RenderPresent(m_pRenderer);

}

10.	 The drawFrame function uses our m_currentFrame member variable.
We can increment this in the update function like we did before, but
we now do the calculation of the source rectangle inside the draw function.

void Game::update()
{
 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));
}

Now we can build and see our hard work in action.

Drawing in SDL

[46]

Using texture manager as a singleton
Now that we have our texture manager in place we still have one problem. We want to
reuse this TextureManager throughout our game so we don't want it to be a member
of our Game class because then we would have to pass it into our draw function. A
good option for us is to implement TextureManager as a singleton. A singleton is
a class that can only have one instance. This works for us, as we want to reuse the
same TextureManager throughout our game. We can make our TextureManager a
singleton by first making its constructor private.

private:

TextureManager() {}

This is to ensure that it cannot be created like other objects. It can only be created and
accessed using the Instance function, which we will declare and define.

static TextureManager* Instance()
{
 if(s_pInstance == 0)
 {
 s_pInstance = new TextureManager();
 return s_pInstance;
 }

 return s_pInstance;
}

This function checks whether we already have an instance of our TextureManager. If
not, then it constructs it, otherwise it simply returns the static instance. We will also
typedef the TextureManager.

typedef TextureManager TheTextureManager;

We must also define the static instance in TextureManager.cpp.

TextureManager* TextureManager::s_pInstance = 0;

Chapter 2

[47]

We can now use our TextureManager as a singleton. We no longer have to have an
instance of TextureManager in our Game class, we just include the header and use it
as follows:

// to load
if(!TheTextureManager::Instance()->load("assets/animate-alpha.png",
"animate", m_pRenderer))
{
 return false;
}
// to draw
TheTextureManager::Instance()->draw("animate", 0,0, 128, 82,
m_pRenderer);

When we load a texture in our Game (or any other) class we can then access it
throughout our code.

Summary
This chapter has been all about rendering images onto the screen. We have covered
source and destination rectangles and animating a sprite sheet. We took what we
learned and applied it to creating a reusable texture manager class, enabling us to
easily load and draw images throughout our game. In the next chapter, we will
cover using inheritance and polymorphism to create a base game object class and
use it within our game framework.

Working with Game Objects
All games have objects, for example, players, enemies, non-player character (NPC),
traps, bullets, and doors. Keeping track of all these objects and how they interact with
each other is a big task and one that we would like to make as simple as possible.
Our game could become unwieldy and difficult to update if we do not have a solid
implementation. So what can we do to make our task easier? We can start by really
trying to leverage the power of object-oriented programming (OOP). We will cover
the following in this chapter:

•	 Using inheritance
•	 Implementing polymorphism
•	 Using abstract base classes
•	 Effective inheritance design

Using inheritance
The first powerful feature of OOP we will look at is inheritance. This feature can
help us enormously when developing our reusable framework. Through the use
of inheritance, we can share common functionality between similar classes and
also create subtypes from existing types. We will not go into too much detail
about inheritance itself but instead we will start to think about how we will apply
it to our framework.

As mentioned earlier, all games have objects of various types. In most cases, these
objects will have a lot of the same data and require a lot of the same basic functions.
Let's look at some examples of this common functionality:

•	 Almost all of our objects will be drawn to the screen, thus requiring a
draw function

•	 If our objects are to be drawn, they will need a location to draw to,
that is, x and y position variables

Working with Game Objects

[50]

•	 We don't want static objects all the time, so we will need an update function
•	 Objects will be responsible for cleaning up after themselves; a function that

deals with this will be important

This is a good starting point for our first game object class, so let's go ahead and
create it. Add a new class to the project called GameObject and we can begin:

class GameObject
{
public:

 void draw() { std::cout << "draw game object"; }
 void update() { std::cout << "update game object"; }
 void clean() { std::cout << "clean game object"; }

protected:

 int m_x;
 int m_y;
};

The public, protected, and private keywords are very important.
Public functions and data are accessible from anywhere. Protected
status restricts access to only those classes derived from it. Private
members are only available to that class, not even its derived classes.

So, there we have our first game object class. Now let's inherit from it and create a
class called Player:

class Player : public GameObject // inherit from GameObject
{
public:

 void draw()
 {
 GameObject::draw();
 std::cout << "draw player";
 }
 void update()
 {
 std::cout << "update player";
 m_x = 10;
 m_y = 20;
 }
 void clean()

Chapter 3

[51]

 {
 GameObject::clean();
 std::cout << "clean player";
 }
};

What we have achieved is the ability to reuse the code and data that we
originally had in GameObject and apply it to our new Player class. As you
can see, a derived class can override the functionality of a parent class:

void update()
{
 std::cout << "update player";
 m_x = 10;
 m_y = 20;
}

Or it can even use the functionality of the parent class, while also having its
own additional functionality on top:

void draw()
{
 GameObject::draw();
 std::cout << "draw player";
}

Here we call the draw function from GameObject and then define some
player-specific functionality.

The :: operator is called the scope resolution operator and it is used
to identify the specific place that some data or function resides.

Okay, so far our classes do not do much, so let's add some of our SDL functionality.
We will add some drawing code to the GameObject class and then reuse it within
our Player class. First we will update our GameObject header file with some new
values and functions to allow us to use our existing SDL code:

class GameObject
{
public:

 void load(int x, int y, int width, int height, std::string
 textureID);
 void draw(SDL_Renderer* pRenderer);
 void update();

Working with Game Objects

[52]

 void clean();

protected:

 std::string m_textureID;

 int m_currentFrame;
 int m_currentRow;

 int m_x;
 int m_y;

 int m_width;
 int m_height;
};

We now have some new member variables that will be set in the new load function.
We are also passing in the SDL_Renderer object we want to use in our draw function.
Let's define these functions in an implementation file and create GameObject.cpp:

First define our new load function:

void GameObject::load(int x, int y, int width, int height, std::string
textureID)
{
 m_x = x;
 m_y = y;
 m_width = width;
 m_height = height;
 m_textureID = textureID;

 m_currentRow = 1;
 m_currentFrame = 1;
}

Here we are setting all of the values we declared in the header file. We will just use
a start value of 1 for our m_currentRow and m_currentFrame values. Now we can
create our draw function that will make use of these values:

void GameObject::draw(SDL_Renderer* pRenderer)
{
 TextureManager::Instance()->drawFrame(m_textureID, m_x, m_y,
 m_width, m_height, m_currentRow, m_currentFrame, pRenderer);
}

Chapter 3

[53]

We grab the texture we want from TextureManager using m_textureID and draw it
according to our set values. Finally we can just put something in our update function
that we can override in the Player class:

void GameObject::update()
{
 m_x += 1;
}

Our GameObject class is complete for now. We can now alter the Player header file
to reflect our changes:

#include "GameObject.h"

class Player : public GameObject
{
public:

 void load(int x, int y, int width, int height, std::string
 textureID);
 void draw(SDL_Renderer* pRenderer);
 void update();
 void clean();
};

We can now move on to defining these functions in an implementation file.
Create Player.cpp and we'll walk through the functions. First we will start
with the load function:

void Player::load(int x, int y, int width, int height, string
textureID)
{
 GameObject::load(x, y, width, height, textureID);
}

Here we can use our GameObject::load function. And the same applies to our
draw function:

void Player::draw(SDL_Renderer* pRenderer)
{
 GameObject::draw(pRenderer);
}

Working with Game Objects

[54]

And let's override the update function with something different; let's animate this
one and move it in the opposite direction:

void Player::update()
{
 m_x -= 1;
}

We are all set; we can create these objects in the Game header file:

GameObject m_go;
Player m_player;

Then load them in the init function:

m_go.load(100, 100, 128, 82, "animate");
m_player.load(300, 300, 128, 82, "animate");

They will then need to be added to the render and update functions:

void Game::render()
{

 SDL_RenderClear(m_pRenderer); // clear to the draw colour

 m_go.draw(m_pRenderer);
 m_player.draw(m_pRenderer);

 SDL_RenderPresent(m_pRenderer); // draw to the screen

}

void Game::update()
{
 m_go.update();
 m_player.update();
}

We have one more thing to add to make this run correctly. We need to cap our frame
rate slightly; if we do not, then our objects will move far too fast. We will go into
more detail about this in a later chapter, but for now we can just put a delay in our
main loop. So, back in main.cpp, we can add this line:

while(g_game->running())
{
 g_game->handleEvents();
 g_game->update();

Chapter 3

[55]

 g_game->render();

 SDL_Delay(10); // add the delay
}

Now build and run to see our two separate objects:

Our Player class was extremely easy to write, as we had already written some of
the code in our GameObject class, along with the needed variables. You may have
noticed, however, that we were copying code into a lot of places in the Game class. It
requires a lot of steps to create and add a new object to the game. This is not ideal,
as it would be easy to miss a step and also it will get extremely hard to manage and
maintain when a game goes beyond having two or three different objects.

What we really want is for our Game class not to need to care about different types;
then we could loop through all of our game objects in one go, with separate loops
for each of their functions.

Implementing polymorphism
This leads us to our next OOP feature, polymorphism. What polymorphism allows
us to do is to refer to an object through a pointer to its parent or base class. This may
not seem powerful at first, but what this will allow us to do is essentially have our
Game class need only to store a list of pointers to one type and any derived types can
also be added to this list.

Working with Game Objects

[56]

Let us take our GameObject and Player classes as examples, with an added derived
class, Enemy. In our Game class we have an array of GameObject*:

std::vector<GameObject*> m_gameObjects;

We then declare four new objects, all of which are GameObject*:

GameObject* m_player;
GameObject* m_enemy1;
GameObject* m_enemy2;
GameObject* m_enemy3;

In our Game::init function we can then create instances of the objects using their
individual types:

m_player = new Player();
m_enemy1 = new Enemy();
m_enemy2 = new Enemy();
m_enemy3 = new Enemy();

Now they can be pushed into the array of GameObject*:

m_gameObjects.push_back(m_player);
m_gameObjects.push_back(m_enemy1);
m_gameObjects.push_back(m_enemy2);
m_gameObjects.push_back(m_enemy3);

The Game::draw function can now look something like this:

void Game::draw()
{
 for(std::vector<GameObject*>::size_type i = 0; i !=
 m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw(m_pRenderer);
 }
}

Notice that we are looping through all of our objects and calling the draw function.
The loop does not care that some of our objects are actually Player or Enemy; it
handles them in the same manner. We are accessing them through a pointer to their
base class. So, to add a new type, it simply needs to be derived from GameObject,
and the Game class can handle it.

Chapter 3

[57]

•	 So let's implement this for real in our framework. First we need a base class;
we will stick with GameObject. We will have to make some changes to the
class so that we can use it as a base class:
class GameObject
{
public:

 virtual void load(int x, int y, int width, int height,
 std::string textureID);
 virtual void draw(SDL_Renderer* pRenderer);
 virtual void update();
 virtual void clean();

protected:

 std::string m_textureID;

 int m_currentFrame;
 int m_currentRow;

 int m_x;
 int m_y;

 int m_width;
 int m_height;
};

Notice that we have now prefixed our functions with the virtual keyword. The
virtual keyword means that when calling this function through a pointer, it uses
the definition from the type of the object itself, not the type of its pointer:

void Game::draw()
{
 for(std::vector<GameObject*>::size_type i = 0; i !=
 m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw(m_pRenderer);
 }
}

In other words, this function would always call the draw function contained in
GameObject, neither Player nor Enemy. We would never have the overridden
behavior that we want. The virtual keyword would ensure that the Player and
Enemy draw functions are called.

Working with Game Objects

[58]

Now we have a base class, so let's go ahead and try it out in our Game class. We will
start by declaring the objects in the Game header file:

GameObject* m_go;
GameObject* m_player;

Now declare along with our GameObject* array:

std::vector<GameObject*> m_gameObjects;

Now create and load the objects in the init function, then push them into the array:

m_go = new GameObject();
m_player = new Player();

m_go->load(100, 100, 128, 82, "animate");
m_player->load(300, 300, 128, 82, "animate");

m_gameObjects.push_back(m_go);
m_gameObjects.push_back(m_player);

So far, so good; we can now create a loop that will draw our objects and another that
will update them. Now let's look at the render and update functions:

void Game::render()
{

 SDL_RenderClear(m_pRenderer); // clear to the draw colour

 // loop through our objects and draw them
 for(std::vector<GameObject*>::size_type i = 0; i !=
 m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw(m_pRenderer);
 }

 SDL_RenderPresent(m_pRenderer); // draw to the screen

}

void Game::update()
{
 // loop through and update our objects

Chapter 3

[59]

 for(std::vector<GameObject*>::size_type i = 0; i !=
 m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }
}

As you can see, this is a lot tidier and also much easier to manage. Let us derive one
more class from GameObject just so that we nail this concept down. Create a new
class called Enemy:

class Enemy : public GameObject
{
public:

 void load(int x, int y, int width, int height, std::string
 textureID);
 void draw(SDL_Renderer* pRenderer);
 void update();
 void clean();
};

We will define the functions of this class the same as Player with only the update
function as an exception:

void Enemy::update()
{
 m_y += 1;
 m_x += 1;
 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));
}

Now let's add it to the game. First, we declare it as follows:

GameObject* m_enemy;

Then create, load, and add to the array:

m_enemy = new Enemy();
m_enemy->load(0, 0, 128, 82, "animate");
m_gameObjects.push_back(m_enemy);

Working with Game Objects

[60]

We have just added a new type and it was extremely quick and simple. Run the
game to see our three objects, each with their own different behavior.

We have covered a lot here and have a really nice system for handling our game
objects, yet we still have an issue. There is nothing stopping us from deriving a class
without the update or draw functions that we are using here, or even declaring a
different function and putting the update code in there. It is unlikely that we, as
the developers, would make this mistake, but others using the framework may.
What we would like is the ability to force our derived classes to have their own
implementation of a function we decide upon, creating something of a blueprint
that we want all of our game objects to follow. We can achieve this through the
use of an abstract base class.

Using abstract base classes
If we are to implement our design correctly, then we have to be certain that all of our
derived classes have a declaration and definition for each of the functions we want to
access through the base class pointer. We can ensure this by making GameObject an
abstract base class. An abstract base class cannot be initialized itself; its purpose is to
dictate the design of derived classes. This gives us reusability as we know that any
object we derive from GameObject will immediately work in the overall scheme of
the game.

Chapter 3

[61]

An abstract base class is a class that contains at least one pure virtual function. A
pure virtual function is a function that has no definition and must be implemented in
any derived classes. We can make a function pure virtual by suffixing it with =0.

Should we always use inheritance?
Inheritance and polymorphism are both very useful and really show off the power
of object-oriented programming. However, in some circumstances, inheritance can
cause more problems than it solves, and therefore, we should bear in mind a few
rules of thumb when deciding whether or not to use it.

Could the same thing be achieved with a simpler
solution?
Let's say we want to make a more powerful Enemy object; it will have the same
behavior a regular Enemy object will have but with more health. One possible
solution would be to derive a new class PowerEnemy from Enemy and give it double
health. In this solution the new class will seem extremely sparse; it will use the
functionality from Enemy but with one different value. An easier solution would be
to have a way to set the health of an Enemy class, whether through an accessor or in
the constructor. Inheritance isn't needed at all.

Derived classes should model the "is a"
relationship
When deriving a class, it is a good idea for it to model the "is a" relationship. This
means that the derived class should also be of the same type as the parent class. For
example, deriving a Player2 class from Player would fit the model, as Player2 "is
a" Player. But let's say, for example, we have a Jetpack class and we derive Player
from this class to give it access to all the functionality that a Jetpack class has. This
would not model the "is a" relationship, as a Player class is not a Jetpack class. It
makes a lot more sense to say a Player class has a Jetpack class, and therefore, a
Player class should have a member variable of type Jetpack with no inheritance;
this is known as containment.

Working with Game Objects

[62]

Possible performance penalties
On platforms such as PC and Mac, the performance penalties of using inheritance
and virtual functions are negligible. However, if you are developing for less
powerful devices such as handheld consoles, phones, or embedded systems, this
is something that you should take into account. If your core loop involves calling
a virtual function many times per second, the performance penalties can add up.

Putting it all together
We can now put all of this knowledge together and implement as much as we can
into our framework, with reusability in mind. We have quite a bit of work to do,
so let's start with our abstract base class, GameObject. We are going to strip out
anything SDL-specific so that we can reuse this class in other SDL projects if needed.
Here is our stripped down GameObject abstract base class:

class GameObject
{
public:

 virtual void draw()=0;
 virtual void update()=0;
 virtual void clean()=0;

protected:

 GameObject(const LoaderParams* pParams) {}
 virtual ~GameObject() {}
};

The pure virtual functions have been created, forcing any derived classes to also
declare and implement them. There is also now no load function; the reason for this
is that we don't want to have to create a new load function for each new project.
We can be pretty sure that we will need different values when loading our objects
for different games. The approach we will take here is to create a new class called
LoaderParams and pass that into the constructor of our objects.

LoaderParams is simply a class that takes values into its constructor and sets them
as member variables that can then be accessed to set the initial values of an object.
While it may just seem that we are moving the parameters from the load function
to somewhere else, it is a lot easier to just create a new LoaderParams class than to
track down and alter the load function of all of our objects.

Chapter 3

[63]

So here is our LoaderParams class:

class LoaderParams
{
public:

 LoaderParams(int x, int y, int width, int height, std::string
 textureID) : m_x(x), m_y(y), m_width(width), m_height(height),
 m_textureID(textureID)
 {

 }

 int getX() const { return m_x; }
 int getY() const { return m_y; }
 int getWidth() const { return m_width; }
 int getHeight() const { return m_height; }
 std::string getTextureID() const { return m_textureID; }

private:

 int m_x;
 int m_y;

 int m_width;
 int m_height;

 std::string m_textureID;
};

This class holds any values we need when creating our object exactly the same way
as our load function used to do.

We have also removed the SDL_Renderer parameter from the draw function. We will
instead make our Game class a singleton, such as TextureManager. So, we can add
the following to our Game class:

// create the public instance function
static Game* Instance()
{
 if(s_pInstance == 0)
 {
 s_pInstance = new Game();
 return s_pInstance;
 }

Working with Game Objects

[64]

 return s_pInstance;
}
// make the constructor private
private:

 Game();
// create the s_pInstance member variable
 static Game* s_pInstance;

// create the typedef
 typedef Game TheGame;

In the Game.cpp, we have to define our static instance:

Game* Game::s_pInstance = 0;

Let's also create a function in the header file that will return our
SDL_Renderer object:

SDL_Renderer* getRenderer() const { return m_pRenderer; }

Now that Game is a singleton, we are going to use it differently in our main.cpp file:

int main(int argc, char* argv[])
{
 std::cout << "game init attempt...\n";
 if(TheGame::Instance()->init("Chapter 1", 100, 100, 640, 480,
 false))
 {
 std::cout << "game init success!\n";
 while(TheGame::Instance()->running())
 {
 TheGame::Instance()->handleEvents();
 TheGame::Instance()->update();
 TheGame::Instance()->render();

 SDL_Delay(10);
 }
 }
 else
 {
 std::cout << "game init failure - " << SDL_GetError() << "\n";
 return -1;
 }

Chapter 3

[65]

 std::cout << "game closing...\n";
 TheGame::Instance()->clean();

 return 0;
}

Now when we want to access the m_pRenderer value from Game, we can use the
getRenderer function. Now that GameObject is essentially empty, how do we
achieve the code-sharing we originally had? We are going to derive a new generic
class from GameObject and call it SDLGameObject:

class SDLGameObject : public GameObject
{
public:

 SDLGameObject(const LoaderParams* pParams);

 virtual void draw();
 virtual void update();
 virtual void clean();

protected:

 int m_x;
 int m_y;

 int m_width;
 int m_height;

 int m_currentRow;
 int m_currentFrame;

 std::string m_textureID;
};

With this class we can create our reusable SDL code. First, we can use our new
LoaderParams class to set our member variables:

SDLGameObject::SDLGameObject(const LoaderParams* pParams) :
GameObject(pParams)
{
 m_x = pParams->getX();
 m_y = pParams->getY();
 m_width = pParams->getWidth();
 m_height = pParams->getHeight();

Working with Game Objects

[66]

 m_textureID = pParams->getTextureID();

 m_currentRow = 1;
 m_currentFrame = 1;
}

We can also use the same draw function as before, making use of our singleton Game
class to get the renderer we want:

void SDLGameObject::draw()
{
 TextureManager::Instance()->drawFrame(m_textureID, m_x, m_y,
 m_width, m_height, m_currentRow, m_currentFrame,
 TheGame::Instance()->getRenderer());
}

Player and Enemy can now inherit from SDLGameObject:

class Player : public SDLGameObject
{
public:

 Player(const LoaderParams* pParams);

 virtual void draw();
 virtual void update();
 virtual void clean();
};
// Enemy class
class Enemy : public SDLGameObject
{
public:

 Enemy(const LoaderParams* pParams);

 virtual void draw();
 virtual void update();
 virtual void clean();
};

The Player class can be defined like so (the Enemy class is very similar):

Player::Player(const LoaderParams* pParams) :
SDLGameObject(pParams)
{

Chapter 3

[67]

}

void Player::draw()
{
 SDLGameObject::draw(); // we now use SDLGameObject
}

void Player::update()
{
 m_x -= 1;
 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));
}

void Player::clean()
{
}

Now that everything is in place, we can go ahead and create the objects in our Game
class and see everything in action. We won't add the objects to the header file this
time; we will use a shortcut and build our objects in one line in the init function:

m_gameObjects.push_back(new Player(new LoaderParams(100, 100, 128, 82,
"animate")));

m_gameObjects.push_back(new Enemy(new LoaderParams(300, 300, 128, 82,
"animate")));

Build the project. We now have everything in place to allow us to easily reuse our
Game and GameObject classes.

Summary
We have covered a lot of complex subjects in this chapter, and the concepts and ideas
will take some time to sink in. We have covered the ability to easily create classes
without having to rewrite a lot of similar functionality and the use of inheritance and
how it allows us to share code between similar classes. We looked at polymorphism
and how it can make object management a lot cleaner and reusable while abstract
base classes took our inheritance knowledge up a notch by creating the blueprint
we want all of our objects to follow. Finally, we put all our new knowledge into the
context of our framework.

Exploring Movement
and Input Handling

We have already covered drawing to the screen and how to handle objects but
we have not had anything moving around very much yet. Getting input from the
user and then controlling our game objects is one of the most important topics in
game development. It can decide the feel and responsiveness of your game and is
something that a user can really pick up on. In this chapter we will cover:

•	 Cartesian coordinate systems
•	 2D vectors
•	 Creating variables to control the movement of a game object
•	 Setting up a simple movement system
•	 Setting up input handling from joysticks, keyboard, and mouse
•	 Creating a fixed frame rate

Exploring Movement and Input Handling

[70]

Setting up game objects for movement
In the previous chapter, we gave our objects x and y values which we could then use
to pass into our drawing code. The x and y values we used can be represented using
a Cartesian coordinate system.

Y

X

3,3

7,4

The above figure shows a Cartesian coordinate system (flipped on the Y axis) with
two coordinates. Representing them as (x,y) gives us position 1 as (3,3) and position
2 as (7,4). These values can be used to represent a position in 2D space. Imagine this
figure as a zoomed in image of the top-left corner of our game window, with each of
the grid squares representing one pixel of our game window. With this in mind, we
can see how to use these values to draw things to the screen in the correct position.
We now need a way to update these position values so that we can move our objects
around. For this we will look at 2D vectors.

What is a vector?
A vector can be described as an entity with a direction and a magnitude. We can
 use them to represent aspects of our game objects, for example, velocity and
acceleration, that can be used to create movement. Taking velocity as an example,
to fully represent the velocity of our objects, we need the direction in which they
are travelling and also the amount (or magnitude) by which they are heading in
that direction.

Chapter 4

[71]

Y

X

3,3
7,4

V1[3,-2]

Let's define a couple of things about how we will use vectors:

•	 We will represent a vector as v(x,y)
We can get the length of a vector using the following equation:

lengthofv x,y x + y() = ()2 2

The preceding figure shows the vector v1(3,-2) which will have a length of √(32+
(-22)). We can use the x and y components of a vector to represent our object's
position in 2D space. We can then use some common vector operations to move
our objects. Before we move onto these operations let's create a vector class called
Vector2D in the project. We can then look at each operation we will need and add
them to the class.

#include<math.h>
class Vector2D
{
public:
 Vector2D(float x, float y): m_x(x), m_y(y) {}

 float getX() { return m_x; }
 float getY() { return m_y; }

 void setX(float x) { m_x = x; }
 void setY(float y) { m_y = y; }
private:

 float m_x;
 float m_y;
};

Exploring Movement and Input Handling

[72]

You can see that the Vector2D class is very simple at this point. We have our x
and y values and a way to get and set them. We already know how to get the
length of a vector, so let's create a function for this purpose:

float length() { return sqrt(m_x * m_x + m_y * m_y); }

Some common operations
Now since we have our basic class in place, we can start to gradually add
some operations.

Addition of two vectors
The first operation we will look at is the addition of two vectors. For this we
simply add together the individual components of each vector.

v3 v1 x1+)= v2 = ,y1) + x x2 1),y x2 2))= y1 y2),+ +

Let's make use of overloaded operators to make it easy for us to add two
vectors together:

Vector2D operator+(const Vector2D& v2) const
{
 return Vector2D(m_x + v2.m_x, m_y + v2.m_y);
}

friend Vector2D& operator+=(Vector2D& v1, const Vector2D& v2)
{
 v1.m_x += v2.m_x;
 v1.m_y += v2.m_y;

 return v1;
}

With these functions we can add two vectors together using the standard
addition operators, for example:

Vector2D v1(10, 11);
Vector2D v2(35,25);
v1 += v2;
Vector2D v3 = v1 + v2;

Chapter 4

[73]

Multiply by a scalar number
Another operation is to multiply a vector by a regular scalar number. For this
operation we multiply each component of the vector by the scalar number:

v1 * n= x1 n,) y1)* n*

We can again use overloaded operators to create these functions:

Vector2D operator*(float scalar)
{
 return Vector2D(m_x * scalar, m_y * scalar);
}

Vector2D& operator*=(float scalar)
{
 m_x *= scalar;
 m_y *= scalar;

 return *this;
}

Subtraction of two vectors
Subtraction is very similar to addition.

v3 v1 x1-)= v2 = ,y1) - x x2 1),y -x2 2))= y1-y2),

Let's create some functions to do this for us:

Vector2D operator-(const Vector2D& v2) const
{
 return Vector2D(m_x - v2.m_x, m_y - v2.m_y);
}

friend Vector2D& operator-=(Vector2D& v1, const Vector2D& v2)
{
 v1.m_x -= v2.m_x;
 v1.m_y -= v2.m_y;

 return v1;
}

Exploring Movement and Input Handling

[74]

Divide by a scalar number
By now I am sure you have noticed a pattern emerging and can guess how
dividing a vector by a scalar will work, but we will cover it anyway.

1v

n

1x

n

1y

n
,((=

And our functions:

Vector2D operator/(float scalar)
{
 return Vector2D(m_x / scalar, m_y / scalar);
}

Vector2D& operator/=(float scalar)
{
 m_x /= scalar;
 m_y /= scalar;

 return *this;
}

Normalizing a vector
We need another very important operation and that is the ability to normalize a
vector. Normalizing a vector makes its length equal to 1. Vectors with a length
(magnitude) of 1 are known as unit vectors and are useful to represent just a
direction, such as the facing direction of an object. To normalize a vector we
multiply it by the inverse of its length.

l normalized= length. v = 1v *1/l

We can create a new member function to normalize our vectors:

void normalize()
{
 float l = length();
 if (l > 0) // we never want to attempt to divide by 0
 {
 (*this) *= 1 / l;
 }
}

Chapter 4

[75]

Now that we have a few basic functions in place, let's start to use these vectors in our
SDLGameObject class.

Adding the Vector2D class
1.	 Open up SDLGameObject.h and we can begin implementing the vectors.

First we need to include the new Vector2D class.
#include "Vector2D.h"

2.	 We also need to remove the previous m_x and m_y values and replace
them with Vector2D.
Vector2D m_position;

3.	 Now we can move to the SDLGameObject.cpp file and update the
constructor.
SDLGameObject::SDLGameObject(const LoaderParams* pParams) :
GameObject(pParams), m_position(pParams->getX(), pParams->getY())
{
 m_width = pParams->getWidth();
 m_height = pParams->getHeight();
 m_textureID = pParams->getTextureID();

 m_currentRow = 1;
 m_currentFrame = 1;
}

4.	 We now construct the m_position vector using the member initialization
list and we must also use the m_position vector in our draw function.
void SDLGameObject::draw()
{
 TextureManager::Instance()->drawFrame(m_textureID,
 (int)m_position.getX(), (int)m_position.getY(), m_width,
 m_height, m_currentRow, m_currentFrame,
 TheGame::Instance()->getRenderer());
}

5.	 One last thing before we test is to use our vector in the
Enemy::update function.

void Enemy::update()
{
 m_position.setX(m_position.getX() + 1);
 m_position.setY(m_position.getY() + 1);
}

Exploring Movement and Input Handling

[76]

This function will use vector addition very soon, but for now we just add 1 to the
current position to get the same behavior we already had. We can now run the game
and we will see that we have implemented a very basic vector system. Go ahead and
play around with the Vector2D functions.

Adding velocity
We previously had to separately set the x and y values of our objects, but now that
our position is a vector, we have the ability to add a new vector to it to update our
movement. We will call this vector the velocity vector and we can think of it as the
amount we want our object to move in a specific direction:

1.	 The velocity vector can be represented as follows:

vposition vvelocity xposition+ = +xvelocity ,yposition+ yvelocity((

2.	 We can add this to our SDLGameObject update function as this is the way we
update all derived objects. So first let's create the velocity member variable.
Vector2D m_velocity;

3.	 We will construct it in the member initialization list as 0,0.
SDLGameObject::SDLGameObject(const LoaderParams* pParams) :
GameObject(pParams), m_position(pParams->getX(), pParams-
>getY()), m_velocity(0,0)

4.	 And now we will move to the SDLGameObject::update function.
void SDLGameObject::update()
{
 m_position += m_velocity;
}

5.	 We can test this out in one of our derived classes. Move to Player.cpp and
add the following:
void Player::update()
{
 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));

 m_velocity.setX(1);

 SDLGameObject::update();
}

Chapter 4

[77]

We set the m_velocity x value to 1. This means that we will add 1 to our
m_position x value each time the update function is called. Now we can run
this to see our object move using the new velocity vector.

Adding acceleration
Not all of our objects will move along at a constant velocity. Some games will
require that we gradually increase the velocity of our object using acceleration.
A car or a spaceship are good examples. No one would expect these objects to
hit their top speed instantaneously. We are going to need a new vector for
acceleration, so let's add this into our SDLGameObject.h file.

Vector2D m_acceleration;

Then we can add it to our update function.

void SDLGameObject::update()
{
 m_velocity += m_acceleration;
 m_position += m_velocity;
}

Now alter our Player::update function to set the acceleration rather than
the velocity.

void Player::update()
{
 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));

 m_acceleration.setX(1);

 SDLGameObject::update();
}

After running our game you will see that the object gradually picks up speed.

Creating fixed frames per second
Earlier in the book we put in an SDL_Delay function to slow everything down and
ensure that our objects weren't moving too fast. We will now expand upon that
by making our game run at a fixed frame rate. Fixed frames per second (FPS) is
not necessarily always a good option, especially when your game includes more
advanced physics. It is worth bearing this in mind when you move on from this
book and start developing your own games. Fixed FPS will, however, be fine for
the small 2D games, which we will work towards in this book.

Exploring Movement and Input Handling

[78]

With that said, let's move on to the code:

1.	 Open up main.cpp and we will create a few constant variables.
const int FPS = 60;
const int DELAY_TIME = 1000.0f / FPS;

int main()
{

2.	 Here we define how many frames per second we want our game to run
at. A frame rate of 60 frames per second is a good starting point as this is
essentially synced up to the refresh rate of most modern monitors and TVs.
We can then divide this by the number of milliseconds in a second, giving
us the amount of time we need to delay the game between loops to keep our
constant frame rate. We need another two variables at the top of our main
function; these will be used in our calculations.
int main()
{
 Uint32 frameStart, frameTime;

3.	 We can now implement our fixed frame rate in our main loop.

while(TheGame::Instance()->running())
{
 frameStart = SDL_GetTicks();

 TheGame::Instance()->handleEvents();
 TheGame::Instance()->update();
 TheGame::Instance()->render();

 frameTime = SDL_GetTicks() - frameStart;

 if(frameTime< DELAY_TIME)
 {
 SDL_Delay((int)(DELAY_TIME - frameTime));
 }
}

First we get the time at the start of our loop and store it in frameStart. For this we
use SDL_GetTicks which returns the amount of milliseconds since we called SDL_
Init. We then run our game loop and store how long it took to run by subtracting
the time our frame started from the current time. If it is less than the time we want a
frame to take, we call SDL_Delay and make our loop wait for the amount of time we
want it to, subtracting how long the loop already took to complete.

Chapter 4

[79]

Input handling
We have now got our objects moving based on velocity and acceleration, so next we
must introduce some way of controlling this movement through user input. SDL
supports a number of different types of user interface devices including joysticks,
gamepads, mouse, and keyboard, all of which will be covered in this chapter, along
with how to add them into our framework implementation.

Creating our input handler class
We will create a class that handles all device input, whether it is from controllers,
keyboard, or mouse. Let's start with a basic class and build from there. First we need
a header file, InputHandler.h.

#include "SDL.h"
class InputHandler
{
public:
 static InputHandler* Instance()
 {
 if(s_pInstance == 0)
 {
 s_pInstance = new InputHandler();
 }

 return s_pInstance;
 }

 void update();
 void clean();

private:

 InputHandler();
 ~InputHandler() {}

 static InputHandler* s_pInstance;
};
typedef InputHandler TheInputHandler;

This is our singleton InputHandler. So far we have an update function which will
poll for events and update our InputHandler accordingly, and a clean function
which will clear any devices we have initialized. As we start adding device support
we will flesh this out a lot more.

Exploring Movement and Input Handling

[80]

Handling joystick/gamepad input
There are tons of joysticks and gamepads out there, often with different amounts of
buttons and analog sticks amongst other things. PC game developers have a lot to
do when trying to support all of these different gamepads. SDL has good support for
joysticks and gamepads, so we should be able to come up with a system that would
not be difficult to extend for different gamepad support.

SDL joystick events
There are a few different structures for handling joystick events in SDL. The table
below lists each one and their purpose.

SDL joystick event Purpose
SDL_JoyAxisEvent Axis motion information
SDL_JoyButtonEvent Button press and release information
SDL_JoyBallEvent Trackball event motion information
SDL_JoyHatEvent Joystick hat position change

The events we are most interested in are the axis motion and the button press events.
Each of these events also has an enumerated type that we can check for in our event
loop to ensure we are only handling the events we want to handle. The table below
shows the type value for each of the above events.

SDL joystick event Type value
SDL_JoyAxisEvent SDL_JOYAXISMOTION

SDL_JoyButtonEvent SDL_JOYBUTTONDOWN or
SDL_JOYBUTTONUP

SDL_JoyBallEvent SDL_JOYBALLMOTION

SDL_JoyHatEvent SDL_JOYHATMOTION

It's a good idea to use the Joystick Control Panel property in Windows
or JoystickShow on OSX to find out which button numbers you
will need to use in SDL for a specific button. These applications are
invaluable for finding out things about your joystick/gamepad so you
can support them properly.

Chapter 4

[81]

The code we will put in place will assume we are using a Microsoft Xbox 360 controller
(which can be used on PC or OSX), as this is an extremely popular controller for PC
gaming. Other controllers, such as the PS3 controller, could possibly have different
values for buttons and axes. The Xbox 360 controller consists of the following:

•	 Two analog sticks
•	 Analog sticks press as buttons
•	 Start and Select buttons
•	 Four face buttons: A, B, X, and Y
•	 Four triggers: two digital and two analog
•	 A digital directional pad

Initializing joysticks
1.	 To use gamepads and joysticks in SDL we first need to initialize them. We are

going to add a new public function to the InputHandler class. This function
will find out how many joysticks SDL has access to and then initialize them.
void initialiseJoysticks();
bool joysticksInitialised() {
return m_bJoysticksInitialised; }

2.	 We will also declare some private member variables that we will need.
std::vector<SDL_Joystick*> m_joysticks;
bool m_bJoysticksInitialised;

3.	 The SDL_Joystick* is a pointer to the joystick we will be initializing. We
won't actually need these pointers when using the joysticks, but we do need
to close them after we are done, so it is helpful for us to keep a list of them
for later access. We will now define our initialiseJoysticks function and
then go through it.
void InputHandler::initialiseJoysticks()
{
 if(SDL_WasInit(SDL_INIT_JOYSTICK) == 0)
 {
 SDL_InitSubSystem(SDL_INIT_JOYSTICK);
 }

 if(SDL_NumJoysticks() > 0)
 {
 for(int i = 0; i < SDL_NumJoysticks(); i++)
 {
 SDL_Joystick* joy = SDL_JoystickOpen(i);

Exploring Movement and Input Handling

[82]

 if(SDL_JoystickOpened(i) == 1)
 {
 m_joysticks.push_back(joy);
 }
 else
 {
 std::cout << SDL_GetError();
 }
 }
 SDL_JoystickEventState(SDL_ENABLE);
 m_bJoysticksInitialised = true;

 std::cout << "Initialised "<< m_joysticks.size() << "
 joystick(s)";
 }
 else
 {
 m_bJoysticksInitialised = false;
 }
}

4.	 Let's go through this line-by-line. First we check whether the joystick
subsystem has been initialized using SDL_WasInit. If it has not been
initialized we then initialize it using SDL_InitSubSystem.
if(SDL_WasInit(SDL_INIT_JOYSTICK) == 0)
{
 SDL_InitSubSystem(SDL_INIT_JOYSTICK);
}

5.	 Next is the opening of each available joystick. Before we attempt to open the
objects, we use SDL_NumJoysticks to make sure there are some joysticks
available. We can then loop through the number of joysticks, opening them
in turn with SDL_JoystickOpen. They can then be pushed into our array for
closing later.
if(SDL_NumJoysticks() > 0)
{
 for(int i = 0; i < SDL_NumJoysticks(); i++)
 {
 SDL_Joystick* joy = SDL_JoystickOpen(i);
 if(SDL_JoystickOpened(i))
 {

Chapter 4

[83]

 m_joysticks.push_back(joy);
 }
 else
 {
 std::cout << SDL_GetError();
 }
 }
}

6.	 Finally, we tell SDL to start listening for joystick events by enabling SDL_
JoystickEventState. We also set our m_bJoysticksEnabled member
variable according to how our initialization went.
SDL_JoystickEventState(SDL_ENABLE);
m_bJoysticksInitialised = true;

std::cout << "Initialised " << m_joysticks.size() << "
joystick(s)";

}
else
{
 m_bJoysticksInitialised = false;
}

7.	 So, we now have a way to initialize our joysticks. We have two other
functions to define, the update and clean functions. The clean function will
loop through our SDL_Joystick* array and call SDL_JoystickClose on
each iteration.
void InputHandler::clean()
{
 if(m_bJoysticksInitialised)
 {
 for(unsigned int i = 0; i < SDL_NumJoysticks(); i++)
 {
 SDL_JoystickClose(m_joysticks[i]);
 }
 }
}

8.	 The update function will be called in each frame in the main game loop to
update the event state. For now though it will simply listen for a quit event
and call the game's quit function (this function simply calls SDL_Quit()).
void InputHandler::update()
{
 SDL_Event event;

Exploring Movement and Input Handling

[84]

 while(SDL_PollEvent(&event))
 {
 if(event.type == SDL_QUIT)
 {
 TheGame::Instance()->quit();
 }
 }
}

9.	 Now we will use this InputHandler in our Game class functions. First we call
initialiseJoysticks in the Game::init function.
TheInputHandler::Instance()->initialiseJoysticks();

And we will update it in the Game::handleEvents function, clearing out
anything we had before:

void Game::handleEvents()
{
 TheInputHandler::Instance()->update();
}

10.	 The clean function can also be added to our Game::clean function.
TheInputHandler::Instance()->clean();

11.	 We can now plug in a pad or joystick and run the build. If everything is
working according to plan we should get the following output, with x being
the number of joysticks you have plugged in:
Initialised x joystick(s)

12.	 Ideally we want to easily use one or more controllers with no change to our
code. We already have a way to load in and open as many controllers that
are plugged in, but we need to know which event corresponds to which
controller; we do this using some information stored in the event. Each
joystick event will have a which variable stored within it. Using this will
allow us to find out which joystick the event came from.

if(event.type == SDL_JOYAXISMOTION) // check the type value
{
 int whichOne = event.jaxis.which; // get which controller

Listening for and handling axis movement
We are not going to handle the analog sticks in an analog way. Instead they will be
handled as digital information, that is, they are either on or off. Our controller has
four axes of motion, two for the left analog stick and two for the right.

Chapter 4

[85]

We will make the following assumptions about our controller (you can use an
external application to find out the specific values for your controller):

•	 Left and right movement on stick one is axis 0
•	 Up and down movement on stick one is axis 1
•	 Left and right movement on stick two is axis 3
•	 Up and down movement on stick two is axis 4

The Xbox 360 controller uses axes 2 and 5 for the analog triggers. To handle multiple
controllers with multiple axes we will create a vector of pairs of Vector2D*, one for
each stick.

std::vector<std::pair<Vector2D*, Vector2D*>> m_joystickValues;

We use the Vector2D values to set whether a stick has moved up, down, left, or
right. Now when we initialize our joysticks we need to create a pair of Vector2D* in
the m_joystickValues array.

for(int i = 0; i < SDL_NumJoysticks(); i++)
{
 SDL_Joystick* joy = SDL_JoystickOpen(i);
 if(SDL_JoystickOpened(i))
 {
 m_joysticks.push_back(joy);
 m_joystickValues.push_back(std::make_pair(new
 Vector2D(0,0),new Vector2D(0,0))); // add our pair
 }
 else
 {
 std::cout << SDL_GetError();
 }
}

We need a way to grab the values we need from this array of pairs; we will declare
two new functions to the InputHandler class:

int xvalue(int joy, int stick);
int yvalue(int joy, int stick);

The joy parameter is the identifier (ID) of the joystick we want to use, and the stick is
1 for the left stick and 2 for the right stick. Let's define these functions:

int InputHandler::xvalue(int joy, int stick);
{
 if(m_joystickValues.size() > 0)
 {

Exploring Movement and Input Handling

[86]

 if(stick == 1)
 {
 return m_joystickValues[joy].first->getX();
 }
 else if(stick == 2)
 {
 return m_joystickValues[joy].second->getX();
 }
 }
 return 0;
}

int InputHandler::yvalue(int joy, int stick)
{
 if(m_joystickValues.size() > 0)
 {
 if(stick == 1)
 {
 return m_joystickValues[joy].first->getY();
 }
 else if(stick == 2)
 {
 return m_joystickValues[joy].second->getY();
 }
 }
 return 0;
}

So we grab the x or y value based on the parameters passed to each function. The
first and second values are the first or second objects of the pair in the array, with
joy being the index of the array. We can now set these values accordingly in the
event loop.

SDL_Event event;
while(SDL_PollEvent(&event))
{
 if(event.type == SDL_QUIT)
 {
 TheGame::Instance()->quit();
 }

 if(event.type == SDL_JOYAXISMOTION)
 {
 int whichOne = event.jaxis.which;

Chapter 4

[87]

 // left stick move left or right
 if(event.jaxis.axis == 0)
 {
 if (event.jaxis.value > m_joystickDeadZone)
 {
 m_joystickValues[whichOne].first->setX(1);
 }
 else if(event.jaxis.value < -m_joystickDeadZone)
 {
 m_joystickValues[whichOne].first->setX(-1);
 }
 else
 {
 m_joystickValues[whichOne].first->setX(0);
 }
 }

 // left stick move up or down
 if(event.jaxis.axis == 1)
 {
 if (event.jaxis.value > m_joystickDeadZone)
 {
 m_joystickValues[whichOne].first->setY(1);
 }
 else if(event.jaxis.value < -m_joystickDeadZone)
 {
 m_joystickValues[whichOne].first->setY(-1);
 }
 else
 {
 m_joystickValues[whichOne].first->setY(0);
 }
 }

 // right stick move left or right
 if(event.jaxis.axis == 3)
 {
 if (event.jaxis.value > m_joystickDeadZone)
 {
 m_joystickValues[whichOne].second->setX(1);
 }
 else if(event.jaxis.value < -m_joystickDeadZone)
 {
 m_joystickValues[whichOne].second->setX(-1);

Exploring Movement and Input Handling

[88]

 }
 else
 {
 m_joystickValues[whichOne].second->setX(0);
 }
 }

 // right stick move up or down
 if(event.jaxis.axis == 4)
 {
 if (event.jaxis.value > m_joystickDeadZone)
 {
 m_joystickValues[whichOne].second->setY(1);
 }
 else if(event.jaxis.value < -m_joystickDeadZone)
 {
 m_joystickValues[whichOne].second->setY(-1);
 }
 else
 {
 m_joystickValues[whichOne].second->setY(0);
 }
 }
 }
}

That is a big function! It is, however, relatively straightforward. We first check for
an SDL_JOYAXISMOTION event and we then find out which controller the event came
from using the which value.

int whichOne = event.jaxis.which;

From this we know which joystick the event came from and can set a value in the
array accordingly; for example:

m_joystickValues[whichOne]

First we check the axis the event came from:

if(event.jaxis.axis == 0) // …1,3,4

Chapter 4

[89]

If the axis is 0 or 1, it is the left stick, and if it is 3 or 4, it is the right stick. We use
first or second of the pair to set the left or right stick. You may also have noticed
the m_joystickDeadZone variable. We use this to account for the sensitivity of a
controller. We can set this as a constant variable in the InputHandler header file:

const int m_joystickDeadZone = 10000;

The value 10000 may seem like a big value to use for a stick at rest, but the
sensitivity of a controller can be very high and so requires a value as large as this.
Change this value accordingly for your own controllers.

Just to solidify what we are doing here, let's look closely at one scenario.

// left stick move left or right
{
 if (event.jaxis.value > m_joystickDeadZone)
 {
 m_joystickValues[whichOne].first->setX(1);
 }
 else if(event.jaxis.value < -m_joystickDeadZone)
 {
 m_joystickValues[whichOne].first->setX(-1);
 }
 else
 {
 m_joystickValues[whichOne].first->setX(0);
 }
}

If we get to the second if statement, we know that we are dealing with a left or
right movement event on the left stick due to the axis being 0. We have already set
which controller the event was from and adjusted whichOne to the correct value.
We also want first of the pair to be the left stick. So if the axis is 0, we use the
first object of the array and set its x value, as we are dealing with an x movement
event. So why do we set the value to 1 or -1? We will answer this by starting to
move our Player object.

Open up Player.h and we can start to use our InputHandler to get events. First we
will declare a new private function:

private:

void handleInput();

Exploring Movement and Input Handling

[90]

Now in our Player.cpp file we can define this function to work with the
InputHandler.

void Player::handleInput()
{
 if(TheInputHandler::Instance()->joysticksInitialised())
 {
 if(TheInputHandler::Instance()->xvalue(0, 1) > 0 ||
 TheInputHandler::Instance()->xvalue(0, 1) < 0)
 {
 m_velocity.setX(1 * TheInputHandler::Instance()->xvalue(0,
 1));
 }

 if(TheInputHandler::Instance()->yvalue(0, 1) > 0 ||
 TheInputHandler::Instance()->yvalue(0, 1) < 0)
 {
 m_velocity.setY(1 * TheInputHandler::Instance()->yvalue(0,
 1));
 }

 if(TheInputHandler::Instance()->xvalue(0, 2) > 0 ||
 TheInputHandler::Instance()->xvalue(0, 2) < 0)
 {
 m_velocity.setX(1 * TheInputHandler::Instance()->xvalue(0,
 2));
 }

 if(TheInputHandler::Instance()->yvalue(0, 2) > 0 ||
 TheInputHandler::Instance()->yvalue(0, 2) < 0)
 {
 m_velocity.setY(1 * TheInputHandler::Instance()->yvalue(0,
 2));
 }

 }
}

Then we can call this function in the Player::update function.

void Player::update()
{
 m_velocity.setX(0);
 m_velocity.setY(0);

 handleInput(); // add our function

 m_currentFrame = int(((SDL_GetTicks() / 100) % 6));

 SDLGameObject::update();
}

Chapter 4

[91]

Everything is in place now, but first let's go through how we are setting
our movement.

if(TheInputHandler::Instance()->xvalue(0, 1) > 0 ||
TheInputHandler::Instance()->xvalue(0, 1) < 0)
{
 m_velocity.setX(1 * TheInputHandler::Instance()->xvalue(0, 1));
}

Here, we first check whether xvalue of the left stick is more than 0 (that it has
moved). If so, we set our Player x velocity to be the speed we want multiplied
by xvalue of the left stick, and we know this is either 1 or -1. As you will know,
multiplying a positive number by a negative number results in a negative number,
so multiplying the speed we want by -1 will mean we are setting our x velocity to
a minus value (move left). We do the same for the other stick and also the y values.
Build the project and start moving your Player object with a gamepad. You could
also plug in another controller and update the Enemy class to use it.

Dealing with joystick button input
Our next step is to implement a way to handle button input from our controllers.
This is actually a lot simpler than handling axes. We need to know the current state
of each button so that we can check whenever one has been pressed or released.
To do this, we will declare an array of Boolean values, so each controller (the first
index into the array) will have an array of Boolean values, one for each button on
the controller.

std::vector<std::vector<bool>> m_buttonStates;

We can grab the current button state with a function that looks up the correct button
from the correct joystick.

bool getButtonState(int joy, int buttonNumber)
{
 return m_buttonStates[joy][buttonNumber];
}

The first parameter is the index into the array (the joystick ID), and the second is
the index into the buttons. Next we are going to have to initialize this array for each
controller and each of its buttons. We will do this in the initialiseJoysticks
function.

for(int i = 0; i < SDL_NumJoysticks(); i++)
{
 SDL_Joystick* joy = SDL_JoystickOpen(i);
 if(SDL_JoystickOpened(i))

Exploring Movement and Input Handling

[92]

 {
 m_joysticks.push_back(joy);
 m_joystickValues.push_back(std::make_pair(new
 Vector2D(0,0),new Vector2D(0,0)));

 std::vector<bool> tempButtons;

 for(int j = 0; j < SDL_JoystickNumButtons(joy); j++)
 {
 tempButtons.push_back(false);
 }

 m_buttonStates.push_back(tempButtons);
 }
}

We use SDL_JoystickNumButtons to get the number of buttons for each of our
joysticks. We then push a value for each of these buttons into an array. We push
false to start, as no buttons are pressed. This array is then pushed into our m_
buttonStates array to be used with the getButtonState function. Now we must
listen for button events and set the value in the array accordingly.

if(event.type == SDL_JOYBUTTONDOWN)
{
 int whichOne = event.jaxis.which;

 m_buttonStates[whichOne][event.jbutton.button] = true;
}

if(event.type == SDL_JOYBUTTONUP)
{
 int whichOne = event.jaxis.which;

 m_buttonStates[whichOne][event.jbutton.button] = false;
}

When a button is pressed (SDL_JOYBUTTONDOWN) we get to know which controller it
was pressed on and use this as an index into the m_buttonStates array. We then use
the button number (event.jbutton.button) to set the correct button to true; the
same applies when a button is released (SDL_JOYBUTTONUP). That is pretty much it
for button handling. Let's test it out in our Player class.

if(TheInputHandler::Instance()->getButtonState(0, 3))
{
 m_velocity.setX(1);
}

Chapter 4

[93]

Here we are checking if button 3 has been pressed (Yellow or Y on an Xbox
controller) and setting our velocity if it has. That is everything we will cover about
joysticks in this book. You will realize that supporting many joysticks is very tricky
and requires a lot of tweaking to ensure each one is handled correctly. However,
there are ways through which you can start to have support for many joysticks; for
example, through a configuration file or even by the use of inheritance for different
joystick types.

Handling mouse events
Unlike joysticks, we do not have to initialize the mouse. We can also safely assume
that there will only be one mouse plugged in at a time, so we will not need to
handle multiple mouse devices. We can start by looking at the available mouse
events that SDL covers:

SDL Mouse Event Purpose
SDL_MouseButtonEvent A button on the mouse has been pressed or released
SDL_MouseMotionEvent The mouse has been moved
SDL_MouseWheelEvent The mouse wheel has moved

Just like the joystick events, each mouse event has a type value; the following table
shows each of these values:

SDL Mouse Event Type Value
SDL_MouseButtonEvent SDL_MOUSEBUTTONDOWN or SDL_MOUSEBUTTONUP
SDL_MouseMotionEvent SDL_MOUSEMOTION

SDL_MouseWheelEvent SDL_MOUSEWHEEL

We will not implement any mouse wheel movement events as most games will not
use them.

Using mouse button events
Implementing mouse button events is as straightforward as joystick events, more
so even as we have only three buttons to choose from: left, right, and middle. SDL
numbers these as 0 for left, 1 for middle, and 2 for right. In our InputHandler
header, let's declare a similar array to the joystick buttons, but this time a one-
dimensional array, as we won't handle multiple mouse devices.

std::vector<bool> m_mouseButtonStates;

Exploring Movement and Input Handling

[94]

Then in the constructor of our InputHandler we can push our three mouse button
states (defaulted to false) into the array:

for(int i = 0; i < 3; i++)
{
 m_mouseButtonStates.push_back(false);
}

Back in our header file, let's create an enum attribute to help us with the values
of the mouse buttons. Put this above the class so that other files that include our
InputHandler.h header can use it too.

enum mouse_buttons
{
 LEFT = 0,
 MIDDLE = 1,
 RIGHT = 2
};

Now let's handle mouse events in our event loop:

if(event.type == SDL_MOUSEBUTTONDOWN)
{
 if(event.button.button == SDL_BUTTON_LEFT)
 {
 m_mouseButtonStates[LEFT] = true;
 }

 if(event.button.button == SDL_BUTTON_MIDDLE)
 {
 m_mouseButtonStates[MIDDLE] = true;
 }

 if(event.button.button == SDL_BUTTON_RIGHT)
 {
 m_mouseButtonStates[RIGHT] = true;
 }
}

if(event.type == SDL_MOUSEBUTTONUP)
{
 if(event.button.button == SDL_BUTTON_LEFT)
 {
 m_mouseButtonStates[LEFT] = false;
 }

Chapter 4

[95]

 if(event.button.button == SDL_BUTTON_MIDDLE)
 {
 m_mouseButtonStates[MIDDLE] = false;
 }

 if(event.button.button == SDL_BUTTON_RIGHT)
 {
 m_mouseButtonStates[RIGHT] = false;
 }
}

We also need a function to access our mouse button states. Let's add this public
function to the InputHandler header file:

bool getMouseButtonState(int buttonNumber)
{
 return m_mouseButtonStates[buttonNumber];
}

That is everything we need for mouse button events. We can now test it in our
Player class.

if(TheInputHandler::Instance()->getMouseButtonState(LEFT))
{
 m_velocity.setX(1);
}

Handling mouse motion events
Mouse motion events are very important, especially in big 3D first or third person
action titles. For our 2D games, we might want our character to follow the mouse as
a way to control our objects, or we might want objects to move to where the mouse
was clicked (for a strategy game perhaps). We may even just want to know where
the mouse was clicked so that we can use it for menus. Fortunately for us, mouse
motion events are relatively simple. We will start by creating a private Vector2D* in
the header file to use as the position variable for our mouse:

Vector2D* m_mousePosition;

Next, we need a public accessor for this:

Vector2D* getMousePosition()
{
 return m_mousePosition;
}

Exploring Movement and Input Handling

[96]

And we can now handle this in our event loop:

if(event.type == SDL_MOUSEMOTION)
{
 m_mousePosition->setX(event.motion.x);
 m_mousePosition->setY(event.motion.y);
}

That is all we need for mouse motion. So let's make our Player function follow the
mouse position to test this feature:

Vector2D* vec = TheInputHandler::Instance()->getMousePosition();

m_velocity = (*vec - m_position) / 100;

Here we have set our velocity to a vector from the player's current position to the
mouse position. You can get this vector by subtracting the desired location from the
current location; we already have a vector subtract overloaded operator so this is
easy for us. We also divide the vector by 100; this just dampens the speed slightly so
that we can see it following rather than just sticking to the mouse position. Remove
the / to have your object follow the mouse exactly.

Implementing keyboard input
Our final method of input, and the simplest of the three, is keyboard input. We don't
have to handle any motion events, we just want the state of each button. We aren't
going to declare an array here because SDL has a built-in function that will give us
an array with the state of every key; 1 being pressed and 0 not pressed.

SDL_GetKeyboardState(int* numkeys)

The numkeys parameter will return the number of keys available on the keyboard
(the length of the keystate array). So in our InputHandler header we can declare a
pointer to the array that will be returned from SDL_GetKeyboardState.

Uint8* m_keystate;

When we update our event handler we can also update the state of the keys; put this
at the top of our event loop.

m_keystates = SDL_GetKeyboardState(0);

Chapter 4

[97]

We will now need to create a simple function that checks whether a key is down
or not.

bool InputHandler::isKeyDown(SDL_Scancode key)
{
 if(m_keystates != 0)
 {
 if(m_keystates[key] == 1)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 return false;
}

This function takes SDL_SCANCODE as a parameter. The full list of SDL_SCANCODE
values can be found in the SDL documentation at http://wiki.libsdl.org/
moin.cgi.

We can test the keys in our Player class. We will use the arrow keys to move
our player.

if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_RIGHT))
{
 m_velocity.setX(2);
}

if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_LEFT))
{
 m_velocity.setX(-2);
}

if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_UP))
{
 m_velocity.setY(-2);
}

if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_DOWN))
{
 m_velocity.setY(2);
}

Exploring Movement and Input Handling

[98]

We now have key handling in place. Test as many keys as you can and look up the
SDL_Scancode for the keys you are most likely to want to use.

Wrapping things up
We have now implemented all of the devices we are going to handle, but at the
moment our event loop is in a bit of a mess. We need to break it up into more
manageable chunks. We will do this with the use of a switch statement for event
types and some private functions, within our InputHandler. First let's declare our
functions in the header file:

// private functions to handle different event types

// handle keyboard events
void onKeyDown();
void onKeyUp();

// handle mouse events
void onMouseMove(SDL_Event& event);
void onMouseButtonDown(SDL_Event& event);
void onMouseButtonUp(SDL_Event& event);

// handle joysticks events
void onJoystickAxisMove(SDL_Event& event);
void onJoystickButtonDown(SDL_Event& event);
void onJoystickButtonUp(SDL_Event& event);

We pass in the event from the event loop into each function (apart from keys) so that
we can handle them accordingly. We now need to create our switch statement in the
event loop.

void InputHandler::update()
{
 SDL_Event event;
 while(SDL_PollEvent(&event))
 {
 switch (event.type)
 {
 case SDL_QUIT:
 TheGame::Instance()->quit();
 break;

 case SDL_JOYAXISMOTION:
 onJoystickAxisMove(event);

Chapter 4

[99]

 break;

 case SDL_JOYBUTTONDOWN:
 onJoystickButtonDown(event);
 break;

 case SDL_JOYBUTTONUP:
 onJoystickButtonUp(event);
 break;

 case SDL_MOUSEMOTION:
 onMouseMove(event);
 break;

 case SDL_MOUSEBUTTONDOWN:
 onMouseButtonDown(event);
 break;

 case SDL_MOUSEBUTTONUP:
 onMouseButtonUp(event);
 break;

 case SDL_KEYDOWN:
 onKeyDown();
 break;

 case SDL_KEYUP:
 onKeyUp();
 break;

 default:
 break;
 }
 }
}

As you can see, we now break up our event loop and call the associated function
depending on the type of the event. We can now split all our previous work into
these functions; for example, we can put all of our mouse button down handling
code into the onMouseButtonDown function.

void InputHandler::onMouseButtonDown(SDL_Event& event)
{
 if(event.button.button == SDL_BUTTON_LEFT)
 {

Exploring Movement and Input Handling

[100]

 m_mouseButtonStates[LEFT] = true;
 }

 if(event.button.button == SDL_BUTTON_MIDDLE)
 {
 m_mouseButtonStates[MIDDLE] = true;
 }

 if(event.button.button == SDL_BUTTON_RIGHT)
 {
 m_mouseButtonStates[RIGHT] = true;
 }
}

The rest of the code for the InputHandler is available within the source
code downloads.

Summary
We have covered some complicated material in this chapter. We have looked
at a small amount of vector mathematics and how we can use it to move our
game objects. We've also covered the initialization and the use of multiple
joysticks and axes and the use of a mouse and a keyboard. Finally, we wrapped
everything up with a tidy way to handle our events.

Handling Game States
When we first start up a game, we expect to see a splash screen showing any
branding for publishers and developers, followed by a loading screen as the game
does its initial setup. After this, we are usually faced with a menu screen; here,
we can change settings and start the game. Starting the game leads us to another
loading screen, possibly followed by a cut scene, and finally, we are in the game.
When we are in the game, we can pause our play (allowing us to change any
settings), exit the game, restart the level, and so on. If we fail the level, we are
shown either an animation or a game over screen depending on how the game is
set up. All of these different sections of a game are called Game States. It is very
important that we make the transition between these states as easy as possible.

In this chapter we will cover:

•	 Two different ways of handling states, starting with a really simple
implementation and gradually building our framework implementation

•	 Implementing Finite State Machines (FSM)
•	 Adding states to the overall framework

A simple way for switching states
One of the simplest ways to handle states is to load everything we want at the game's
initialization stage, but only draw and update the objects specific to each state. Let's
look at an example of how this could work. First, we can define a set of states we are
going to use:

enum game_states
{
 MENU = 0,
 PLAY = 1,
 GAMEOVER = 2
};

Handling Game States

[102]

We can then use the Game::init function to create the objects:

// create menu objects
m_pMenuObj1 = new MenuObject();
m_pMenuObj1 = new MenuObject();

// create play objects
m_pPlayer = new Player();
m_pEnemy = new Enemy();

// create game over objects…

Then, set our initial state:

m_currentGameState = MENU;

Next, we can change our update function to only use the things we want when in a
specific state:

void Game::update()
{
 switch(m_currentGameState)
 {
 case MENU:
 m_menuObj1->update();
 m_menuObj2->update();
 break;

 case PLAY:
 m_pPlayer->update();
 m_pEnemy->update();

 case GAMEOVER:
 // do game over stuff…
 }
}

The render function would do something similar. These functions could of course
still loop through arrays and use polymorphism as we originally had done, but
on a state-by-state basis. Changing states is as simple as changing the value of the
m_currentGameState variable.

If you can see issues with this method, then it is very encouraging that you are
starting to think in an object-oriented way. This way of updating states would be a
bit of a nightmare to maintain and the scope for error is quite large. There are too
many areas that need to be updated and changed to make this a viable solution for
any game larger than a simple arcade game.

Chapter 5

[103]

Implementing finite state machines
What we really need is the ability to define our states outside the game class, and
have the state itself take care of what it needs to load, render, and update. For this
we can create what is known as an FSM. The definition of FSM, as we will use it,
is a machine that can exist in a finite number of states, can exist in only one state
at a time (known as the current state), and can change from one state to another
(known as a transition).

A base class for game states
Let's start our implementation by creating a base class for all of our states; create a
header file called GameState.h:

#include<string>
class GameState
{
public:
 virtual void update() = 0;
 virtual void render() = 0;

 virtual bool onEnter() = 0;
 virtual bool onExit() = 0;

 virtual std::string getStateID() const = 0;
};

Just like our GameObject class, this is an abstract base class; we aren't actually putting
any functionality into it, we just want all of our derived classes to follow this blueprint.
The update and render functions are self-explanatory, as they will function just like
the functions we created in the Game class. We can think of the onEnter and onExit
functions as similar to other load and clean functions; we call the onEnter function
as soon as a state is created and onExit once it is removed. The last function is a
getter for the state ID; each state will need to define this function and return its own
staticconst ID. The ID is used to ensure that states don't get repeated. There should
be no need to change to the same state, so we check this using the state ID.

That's it for our GameState base class; we can now create some test states that
derive from this class. We will start with a state called MenuState. Go ahead and
create MenuState.h and MenuState.cpp in our project, open up MenuState.h,
and start coding:

#include"GameState.h"

class MenuState : public GameState
{

Handling Game States

[104]

public:

 virtual void update();
 virtual void render();

 virtual bool onEnter();
 virtual bool onExit();

 virtual std::string getStateID() const { return s_menuID; }

private:

 static const std::string s_menuID;
};

We can now define these methods in our MenuState.cpp file. We will just display
some text in the console window for now while we test our implementation; we
will give this state an ID of "MENU":

#include "MenuState.h"

const std::string MenuState::s_menuID = "MENU";

void MenuState::update()
{
 // nothing for now
}

void MenuState::render()
{
 // nothing for now
}

bool MenuState::onEnter()
{
 std::cout << "entering MenuState\n";
 return true;
}

bool MenuState::onExit()
{
 std::cout << "exiting MenuState\n";
 return true;
}

Chapter 5

[105]

We will now create another state called PlayState, create PlayState.h and
PlayState.cpp in our project, and declare our methods in the header file:

#include "GameState.h"

class PlayState : public GameState
{
public:

 virtual void update();
 virtual void render();

 virtual bool onEnter();
 virtual bool onExit();

 virtual std::string getStateID() const { return s_playID; }

private:

 static const std::string s_playID;
};

This header file is the same as MenuState.h with the only difference being
getStateID returning this class' specific ID ("PLAY"). Let's define our functions:

#include "PlayState.h"

const std::string PlayState::s_playID = "PLAY";

void PlayState::update()
{
 // nothing for now
}

void PlayState::render()
{
 // nothing for now
}

bool PlayState::onEnter()
{
 std::cout << "entering PlayState\n";
 return true;
}

Handling Game States

[106]

bool PlayState::onExit()
{
 std::cout << "exiting PlayState\n";
 return true;
}

We now have two states ready for testing; we must next create our FSM so that we
can handle them.

Implementing FSM
Our FSM is going to need to handle our states in a number of ways, which include:

•	 Removing one state and adding another: We will use this way to completely
change states without leaving the option to return

•	 Adding one state without removing the previous state: This way is useful
for pause menus and so on

•	 Removing one state without adding another: This way will be used to remove
pause states or any other state that had been pushed on top of another one

Now that we have come up with the behavior we want our FSM to have, let's start
creating the class. Create the GameStateMachine.h and GameStateMachine.cpp files
in our project. We will start by declaring our functions in the header file:

#include "GameState.h"

class GameStateMachine
{
public:

 void pushState(GameState* pState);
 void changeState(GameState* pState);
 void popState();
};

We have declared the three functions we need. The pushState function will add a
state without removing the previous state, the changeState function will remove the
previous state before adding another, and finally, the popState function will remove
whichever state is currently being used without adding another. We will need a
place to store these states; we will use a vector:

private:

std::vector<GameState*> m_gameStates;

Chapter 5

[107]

In the GameStateMachine.cpp file, we can define these functions and then go
through them step-by-step:

void GameStateMachine::pushState(GameState *pState)
{
 m_gameStates.push_back(pState);
 m_gameStates.back()->onEnter();
}

This is a very straightforward function; we simply push the passed-in pState
parameter into the m_gameStates array and then call its onEnter function:

void GameStateMachine::popState()
{
 if(!m_gameStates.empty())
 {
 if(m_gameStates.back()->onExit())
 {
 delete m_gamestates.back();
 m_gameStates.pop_back();
 }
 }
}

Another simple function is popState. We first check if there are actually any states
available to remove, and if so, we call the onExit function of the current state and
then remove it:

void GameStateMachine::changeState(GameState *pState)
{
 if(!m_gameStates.empty())
 {
 if(m_gameStates.back()->getStateID() == pState->getStateID())
 {
 return; // do nothing
 }

 if(m_gameStates.back()->onExit())
 {
 delete m_gamestates.back();
 m_gameStates.pop_back();
 }
 }

 // push back our new state

Handling Game States

[108]

 m_gameStates.push_back(pState);

 // initialise it
 m_gameStates.back()->onEnter();
}

Our third function is a little more complicated. First, we must check if there are
already any states in the array, and if there are, we check whether their state ID is the
same as the current one, and if it is, then we do nothing. If the state IDs do not match,
then we remove the current state, add our new pState, and call its onEnter function.
Next, we will add new GameStateMachine as a member of the Game class:

GameStateMachine* m_pGameStateMachine;

We can then use the Game::init function to create our state machine and add our
first state:

m_pGameStateMachine = new GameStateMachine();
m_pGameStateMachine->changeState(new MenuState());

The Game::handleEvents function will allow us to move between our states for
now:

void Game::handleEvents()
{
 TheInputHandler::Instance()->update();

 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_RETURN))
 {
 m_pGameStateMachine->changeState(new PlayState());
 }
}

When we press the Enter key, the state will change. Test the project and you should
get the following output after changing states:

entering MenuState
exiting MenuState
entering PlayState

We now have the beginnings of our FSM and can next add update and render
functions to our GameStateMachine header file:

void update();
void render();

Chapter 5

[109]

We can define them in our GameStateMachine.cpp file:

void GameStateMachine::update()
{
 if(!m_gameStates.empty())
 {
 m_gameStates.back()->update();
 }
}

void GameStateMachine::render()
{
 if(!m_gameStates.empty())
 {
 m_gameStates.back()->render();
 }
}

These functions simply check if there are any states, and if so, they update and
render the current state. You will notice that we use back() to get the current state;
this is because we have designed our FSM to always use the state at the back of the
array. We use push_back() when adding new states so that they get pushed to
the back of the array and used immediately. Our Game class will now use the FSM
functions in place of its own update and render functions:

void Game::render()
{
 SDL_RenderClear(m_pRenderer);

 m_pGameStateMachine->render();

 SDL_RenderPresent(m_pRenderer);
}

void Game::update()
{
 m_pGameStateMachine->update();
}

Our FSM is now in place.

Handling Game States

[110]

Implementing menu states
We will now move on to creating a simple menu state with visuals and mouse
handling. We will use two new screenshots for our buttons, which are available
with the source code downloads:

The following screenshot shows the exit feature:

These are essentially sprite sheets with the three states of our button. Let's create a
new class for these buttons, which we will call MenuButton. Go ahead and create
MenuButton.h and MenuButton.cpp. We will start with the header file:

class MenuButton : public SDLGameObject
{
public:

 MenuButton(const LoaderParams* pParams);

 virtual void draw();
 virtual void update();
 virtual void clean();
};

By now this should look very familiar and it should feel straightforward to create
new types. We will also define our button states as an enumerated type so that our
code becomes more readable; put this in the header file under private:

enum button_state
{
 MOUSE_OUT = 0,
 MOUSE_OVER = 1,
 CLICKED = 2
};

Open up the MenuButton.cpp file and we can start to flesh out our MenuButton class:

MenuButton::MenuButton(const LoaderParams* pParams) :
SDLGameObject(pParams)
{
 m_currentFrame = MOUSE_OUT; // start at frame 0

Chapter 5

[111]

}

void MenuButton::draw()
{
 SDLGameObject::draw(); // use the base class drawing
}

void MenuButton::update()
{
 Vector2D* pMousePos = TheInputHandler::Instance()
 ->getMousePosition();

 if(pMousePos->getX() < (m_position.getX() + m_width)
 && pMousePos->getX() > m_position.getX()
 && pMousePos->getY() < (m_position.getY() + m_height)
 && pMousePos->getY() > m_position.getY())
 {
 m_currentFrame = MOUSE_OVER;

 if(TheInputHandler::Instance()->getMouseButtonState(LEFT))
 {
 m_currentFrame = CLICKED;
 }
 }
 else
 {
 m_currentFrame = MOUSE_OUT;
 }
}

void MenuButton::clean()
{
 SDLGameObject::clean();
}

The only thing really new in this class is the update function. Next, we will go
through each step of this function:

•	 First, we get the coordinates of the mouse pointer and store them in a pointer
to a Vector2D object:
Vector2D* pMousePos = TheInputHandler::Instance()-
>getMousePosition();

Handling Game States

[112]

•	 Now, check whether the mouse is over the button or not. We do this by
first checking whether the mouse position is less than the position of the
right-hand side of the button (x position + width). We then check if the mouse
position is greater than the position of the left-hand side of the button (x
position). The y-position check is essentially the same with y position + height
and y position for bottom and top respectively:
if(pMousePos->getX() < (m_position.getX() + m_width)
&& pMousePos->getX() > m_position.getX()
&& pMousePos->getY() < (m_position.getY() + m_height)
&& pMousePos->getY() > m_position.getY())

•	 If the previous check is true, we know that the mouse is hovering over our
button; we set its frame to MOUSE_OVER (1):
m_currentFrame = MOUSE_OVER;

•	 We can then check whether the mouse has been clicked; if it has, then we set
the current frame to CLICKED(2):
if(TheInputHandler::Instance()->getMouseButtonState(LEFT))
{
 m_currentFrame = CLICKED;
}

•	 If the check is not true, then we know the mouse is outside the button and we
set the frame to MOUSE_OUT (0):

else
{
 m_currentFrame = MOUSE_OUT;
}

We can now test out our reusable button class. Open up our previously created
MenuState.hand, which we will implement for real. First, we are going to need a
vector of GameObject* to store our menu items:

std::vector<GameObject*> m_gameObjects;

Inside the MenuState.cpp file, we can now start handling our menu items:

void MenuState::update()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }
}

Chapter 5

[113]

void MenuState::render()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw();
 }
}

The onExit and onEnter functions can be defined as follows:

bool MenuState::onEnter()
{
 if(!TheTextureManager::Instance()->load("assets/button.png",
 "playbutton", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 if(!TheTextureManager::Instance()->load("assets/exit.png",
 "exitbutton", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 GameObject* button1 = new MenuButton(new LoaderParams(100, 100,
 400, 100, "playbutton"));
 GameObject* button2 = new MenuButton(new LoaderParams(100, 300,
 400, 100, "exitbutton"));

 m_gameObjects.push_back(button1);
 m_gameObjects.push_back(button2);

 std::cout << "entering MenuState\n";
 return true;
}

bool MenuState::onExit()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->clean();
 }
 m_gameObjects.clear();
 TheTextureManager::Instance()
 ->clearFromTextureMap("playbutton");
 TheTextureManager::Instance()

Handling Game States

[114]

 ->clearFromTextureMap("exitbutton");

 std::cout << "exiting MenuState\n";
 return true;
}

We use TextureManager to load our new images and then assign these textures
to two buttons. The TextureManager class also has a new function called
clearFromTextureMap, which takes the ID of the texture we want to remove; it is
defined as follows:

void TextureManager::clearFromTextureMap(std::string id)
{
 m_textureMap.erase(id);
}

This function enables us to clear only the textures from the current state, not the
entire texture map. This is essential when we push states and then pop them, as
we do not want the popped state to clear the original state's textures.

Everything else is essentially identical to how we handle objects in the Game class.
Run the project and we will have buttons that react to mouse events. The window
will look like the following screenshot (go ahead and test it out):

Function pointers and callback functions
Our buttons react to rollovers and clicks but do not actually do anything yet. What
we really want to achieve is the ability to create MenuButton and pass in the function
we want it to call once it is clicked; we can achieve this through the use of function
pointers. Function pointers do exactly as they say: they point to a function. We can
use classic C style function pointers for the moment, as we are only going to use
functions that do not take any parameters and always have a return type of void
(therefore, we do not need to make them generic at this point).

Chapter 5

[115]

The syntax for a function pointer is like this:

returnType (*functionName)(parameters);

We declare our function pointer as a private member in MenuButton.h as follows:

void (*m_callback)();

We also add a new member variable to handle clicking better:

bool m_bReleased;

Now we can alter the constructor to allow us to pass in our function:

MenuButton(const LoaderParams* pParams, void (*callback)());

In our MenuButton.cpp file, we can now alter the constructor and initialize our
pointer with the initialization list:

MenuButton::MenuButton(const LoaderParams* pParams, void (*callback)()
) : SDLGameObject(pParams), m_callback(callback)

The update function can now call this function:

void MenuButton::update()
{
 Vector2D* pMousePos = TheInputHandler::Instance()
 ->getMousePosition();

 if(pMousePos->getX() < (m_position.getX() + m_width)
 && pMousePos->getX() > m_position.getX()
 && pMousePos->getY() < (m_position.getY() + m_height)
 && pMousePos->getY() > m_position.getY())
 {
 if(TheInputHandler::Instance()->getMouseButtonState(LEFT)
 && m_bReleased)
 {
 m_currentFrame = CLICKED;

 m_callback(); // call our callback function

 m_bReleased = false;
 }
 else if(!TheInputHandler::Instance()
 ->getMouseButtonState(LEFT))
 {
 m_bReleased = true;
 m_currentFrame = MOUSE_OVER;
 }
 }

Handling Game States

[116]

 else
 {
 m_currentFrame = MOUSE_OUT;
 }
}

Note that this update function now uses the m_bReleased value to ensure we release
the mouse button before doing the callback again; this is how we want our clicking
to behave.

In our MenuState.h object, we can declare some functions that we will pass into the
constructors of our MenuButton objects:

private:
// call back functions for menu items
static void s_menuToPlay();
static void s_exitFromMenu();

We have declared these functions as static; this is because our callback functionality
will only support static functions. It is a little more complicated to handle regular
member functions as function pointers, so we will avoid this and stick to static
functions. We can define these functions in the MenuState.cpp file:

void MenuState::s_menuToPlay()
{
 std::cout << "Play button clicked\n";
}

void MenuState::s_exitFromMenu()
{
 std::cout << "Exit button clicked\n";
}

We can pass these functions into the constructors of our buttons:

GameObject* button1 = new MenuButton(new LoaderParams(100, 100, 400,
100, "playbutton"), s_menuToPlay);
GameObject* button2 = new MenuButton(new LoaderParams(100, 300, 400,
100, "exitbutton"), s_exitFromMenu);

Test our project and you will see our functions printing to the console. We are now
passing in the function we want our button to call once it is clicked; this functionality
is great for our buttons. Let's test the exit button with some real functionality:

void MenuState::s_exitFromMenu()
{
 TheGame::Instance()->quit();
}

Chapter 5

[117]

Now clicking on our exit button will exit the game. The next step is to allow the
s_menuToPlay function to move to PlayState. We first need to add a getter to the
Game.h file to allow us to access the state machine:

GameStateMachine* getStateMachine(){ return m_pGameStateMachine; }

We can now use this to change states in MenuState:

void MenuState::s_menuToPlay()
{
 TheGame::Instance()->getStateMachine()->changeState(new
 PlayState());
}

Go ahead and test; PlayState does not do anything yet, but our console output
should show the movement between states.

Implementing the temporary play state
We have created MenuState; next, we need to create PlayState so that we can
visually see the change in our states. For PlayState we will create a player object
that uses our helicopter.png image and follows the mouse around. We will start
with the Player.cpp file and add the code to make the Player object follow the
mouse position:

void Player::handleInput()
{
 Vector2D* target = TheInputHandler::Instance()
 ->getMousePosition();

 m_velocity = *target - m_position;

 m_velocity /= 50;
}

First, we get the current mouse location; we can then get a vector that leads from
the current position to the mouse position by subtracting the current position from
the mouse position. We then divide the velocity by a scalar to slow us down a little
and allow us to see our helicopter catch up to the mouse rather than stick to it. Our
PlayState.h file will now need its own vector of GameObject*:

class GameObject;

class PlayState : public GameState
{
public:

Handling Game States

[118]

 virtual void update();
 virtual void render();

 virtual bool onEnter();
 virtual bool onExit();

 virtual std::string getStateID() const { return s_playID; }

private:

 static const std::string s_playID;

 std::vector<GameObject*> m_gameObjects;
};

Finally, we must update the PlayState.cpp implementation file to use our
Player object:

const std::string PlayState::s_playID = "PLAY";

void PlayState::update()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }
}

void PlayState::render()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw();
 }
}

bool PlayState::onEnter()
{
 if(!TheTextureManager::Instance()->load("assets/helicopter.png",
 "helicopter", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

Chapter 5

[119]

 GameObject* player = new Player(new LoaderParams(100, 100, 128,
 55, "helicopter");

 m_gameObjects.push_back(player);

 std::cout << "entering PlayState\n";
 return true;
}

bool PlayState::onExit()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->clean();
 }
 m_gameObjects.clear();
 TheTextureManager::Instance()
 ->clearFromTextureMap("helicopter");

 std::cout << "exiting PlayState\n";
 return true;
}

This file is very similar to the MenuState.cpp file, but this time we are using a
Player object rather than the two MenuButton objects. There is one adjustment to
our SDLGameObject.cpp file that will make PlayState look even better; we are
going to flip the image file depending on the velocity of the object:

void SDLGameObject::draw()
{
 if(m_velocity.getX() > 0)
 {
 TextureManager::Instance()->drawFrame(m_textureID,
 (Uint32)m_position.getX(), (Uint32)m_position.getY(),
 m_width, m_height, m_currentRow, m_currentFrame,
 TheGame::Instance()->getRenderer(),SDL_FLIP_HORIZONTAL);
 }
 else
 {
 TextureManager::Instance()->drawFrame(m_textureID,
 (Uint32)m_position.getX(), (Uint32)m_position.getY(),
 m_width, m_height, m_currentRow, m_currentFrame,
 TheGame::Instance()->getRenderer());
 }
}

Handling Game States

[120]

We check whether the object's velocity is more than 0 (moving to the right-hand side)
and flip the image accordingly. Run our game and you will now have the ability to
move between MenuState and PlayState each with their own functionality and
objects. The following screenshot shows our project so far:

Pausing the game
Another very important state for our games is the pause state. Once paused, the
game could have all kinds of options. Our PauseState class will be very similar to
the MenuState, but with different button visuals and callbacks. Here are our two
new screenshots (again available in the source code download):

The following screenshot shows the resume functionality:

Let's start by creating our PauseState.h file in the project:

class GameObject;

class PauseState : public GameState
{
public:

 virtual void update();

Chapter 5

[121]

 virtual void render();

 virtual bool onEnter();
 virtual bool onExit();

 virtual std::string getStateID() const { return s_pauseID; }

private:

 static void s_pauseToMain();
 static void s_resumePlay();

 static const std::string s_pauseID;

 std::vector<GameObject*> m_gameObjects;
};

Next, create our PauseState.cpp file:

const std::string PauseState::s_pauseID = "PAUSE";

void PauseState::s_pauseToMain()
{
 TheGame::Instance()->getStateMachine()->changeState(new
 MenuState());
}

void PauseState::s_resumePlay()
{
 TheGame::Instance()->getStateMachine()->popState();
}

void PauseState::update()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }
}

void PauseState::render()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw();

Handling Game States

[122]

 }
}

bool PauseState::onEnter()
{
 if(!TheTextureManager::Instance()->load("assets/resume.png",
 "resumebutton", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 if(!TheTextureManager::Instance()->load("assets/main.png",
 "mainbutton", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 GameObject* button1 = new MenuButton(new LoaderParams(200, 100,
 200, 80, "mainbutton"), s_pauseToMain);
 GameObject* button2 = new MenuButton(new LoaderParams(200, 300,
 200, 80, "resumebutton"), s_resumePlay);

 m_gameObjects.push_back(button1);
 m_gameObjects.push_back(button2);

 std::cout << "entering PauseState\n";
 return true;
}

bool PauseState::onExit()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->clean();
 }
 m_gameObjects.clear();
 TheTextureManager::Instance()
 ->clearFromTextureMap("resumebutton");
 TheTextureManager::Instance()
 ->clearFromTextureMap("mainbutton");
 // reset the mouse button states to false
 TheInputHandler::Instance()->reset();

 std::cout << "exiting PauseState\n";
 return true;
}

Chapter 5

[123]

In our PlayState.cpp file, we can now use our new PauseState class:

void PlayState::update()
{
 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_ESCAPE))
 {
 TheGame::Instance()->getStateMachine()->pushState(new
 PauseState());
 }

 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }
}

This function listens for the Esc key being pressed, and once it has been pressed, it
then pushes a new PauseState class onto the state array in FSM. Remember that
pushState does not remove the old state; it merely stops using it and uses the new
state. Once we are done with the pushed state, we remove it from the state array and
the game continues to use the previous state. We remove the pause state using the
resume button's callback:

void PauseState::s_resumePlay()
{
 TheGame::Instance()->getStateMachine()->popState();
}

The main menu button takes us back to the main menu and completely removes any
other states:

void PauseState::s_pauseToMain()
{
 TheGame::Instance()->getStateMachine()->changeState(new
 MenuState());
}

Creating the game over state
We are going to create one final state, GameOverState. To get to this state, we will
use collision detection and a new Enemy object in the PlayState class. We will check
whether the Player object has hit the Enemy object, and if so, we will change to our
GameOverState class. Our Enemy object will use a new image helicopter2.png:

Handling Game States

[124]

We will make our Enemy object's helicopter move up and down the screen just to
keep things interesting. In our Enemy.cpp file, we will add this functionality:

Enemy::Enemy(const LoaderParams* pParams) : SDLGameObject(pParams)
{
 m_velocity.setY(2);
 m_velocity.setX(0.001);
}

void Enemy::draw()
{
 SDLGameObject::draw();
}

void Enemy::update()
{
 m_currentFrame = int(((SDL_GetTicks() / 100) % m_numFrames));

 if(m_position.getY() < 0)
 {
 m_velocity.setY(2);
 }
 else if(m_position.getY() > 400)
 {
 m_velocity.setY(-2);
 }

 SDLGameObject::update();
}

We can now add an Enemy object to our PlayState class:

bool PlayState::onEnter()
{
 if(!TheTextureManager::Instance()->load("assets/helicopter.png",
 "helicopter", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 if(!TheTextureManager::Instance()
 ->load("assets/helicopter2.png", "helicopter2",
 TheGame::Instance()->getRenderer()))
 {
 return false;

Chapter 5

[125]

 }

 GameObject* player = new Player(new LoaderParams(500, 100, 128,
 55, "helicopter"));
 GameObject* enemy = new Enemy(new LoaderParams(100, 100, 128,
 55, "helicopter2"));

 m_gameObjects.push_back(player);
 m_gameObjects.push_back(enemy);

 std::cout << "entering PlayState\n";
 return true;
}

Running the game will allow us to see our two helicopters:

Before we cover collision detection, we are going to create our GameOverState class.
We will be using two new images for this state, one for new MenuButton and one for
a new type, which we will call AnimatedGraphic:

The following screenshot shows the game over functionality:

Handling Game States

[126]

AnimatedGraphic is very similar to other types, so I will not go into too much detail
here; however, what is important is the added value in the constructor that controls
the speed of the animation, which sets the private member variable m_animSpeed:

AnimatedGraphic::AnimatedGraphic(const LoaderParams* pParams, int
animSpeed) : SDLGameObject(pParams), m_animSpeed(animSpeed)
{

}

The update function will use this value to set the speed of the animation:

void AnimatedGraphic::update()
{
 m_currentFrame = int(((SDL_GetTicks() / (1000 / m_animSpeed)) %
 m_numFrames));
}

Now that we have the AnimatedGraphic class, we can implement our
GameOverState class. Create GameOverState.h and GameOverState.cpp in our
project; the header file we will create should look very familiar, as given in the
following code:

class GameObject;

class GameOverState : public GameState
{
public:

 virtual void update();
 virtual void render();

 virtual bool onEnter();
 virtual bool onExit();

 virtual std::string getStateID() const {return s_gameOverID;}

private:

 static void s_gameOverToMain();
 static void s_restartPlay();

 static const std::string s_gameOverID;

 std::vector<GameObject*> m_gameObjects;
};

Chapter 5

[127]

Our implementation file is also very similar to other files already covered, so again
I will only cover the parts that are different. First, we define our static variables
and functions:

const std::string GameOverState::s_gameOverID = "GAMEOVER";

void GameOverState::s_gameOverToMain()
{
 TheGame::Instance()->getStateMachine()->changeState(new
 MenuState());
}

void GameOverState::s_restartPlay()
{
 TheGame::Instance()->getStateMachine()->changeState(new
 PlayState());
}

The onEnter function will create three new objects along with their textures:

bool GameOverState::onEnter()
{
 if(!TheTextureManager::Instance()->load("assets/gameover.png",
 "gameovertext", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 if(!TheTextureManager::Instance()->load("assets/main.png",
 "mainbutton", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 if(!TheTextureManager::Instance()->load("assets/restart.png",
 "restartbutton", TheGame::Instance()->getRenderer()))
 {
 return false;
 }

 GameObject* gameOverText = new AnimatedGraphic(new
 LoaderParams(200, 100, 190, 30, "gameovertext", 2), 2);
 GameObject* button1 = new MenuButton(new LoaderParams(200, 200,
 200, 80, "mainbutton"), s_gameOverToMain);
 GameObject* button2 = new MenuButton(new LoaderParams(200, 300,
 200, 80, "restartbutton"), s_restartPlay);

 m_gameObjects.push_back(gameOverText);

Handling Game States

[128]

 m_gameObjects.push_back(button1);
 m_gameObjects.push_back(button2);

 std::cout << "entering PauseState\n";
 return true;
}

That is pretty much it for our GameOverState class, but we must now create a
condition that creates this state. Move to our PlayState.h file and we will create a
new function to allow us to check for collisions:

bool checkCollision(SDLGameObject* p1, SDLGameObject* p2);

We will define this function in PlayState.cpp:

bool PlayState::checkCollision(SDLGameObject* p1, SDLGameObject*
p2)
{
 int leftA, leftB;
 int rightA, rightB;
 int topA, topB;
 int bottomA, bottomB;

 leftA = p1->getPosition().getX();
 rightA = p1->getPosition().getX() + p1->getWidth();
 topA = p1->getPosition().getY();
 bottomA = p1->getPosition().getY() + p1->getHeight();

 //Calculate the sides of rect B
 leftB = p2->getPosition().getX();
 rightB = p2->getPosition().getX() + p2->getWidth();
 topB = p2->getPosition().getY();
 bottomB = p2->getPosition().getY() + p2->getHeight();

 //If any of the sides from A are outside of B
 if(bottomA <= topB){return false;}
 if(topA >= bottomB){return false; }
 if(rightA <= leftB){return false; }
 if(leftA >= rightB){return false;}

 return true;
}

This function checks for collisions between two SDLGameObject types. For the
function to work, we need to add three new functions to our SDLGameObject class:

Vector2D& getPosition() { return m_position; }
int getWidth() { return m_width; }
int getHeight() { return m_height; }

Chapter 5

[129]

The next chapter will deal with how this function works, but for now, it is enough to
know that it does. Our PlayState class will now utilize this collision detection in its
update function:

void PlayState::update()
{
 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_ESCAPE))
 {
 TheGame::Instance()->getStateMachine()->pushState(new
 PauseState());
 }

 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }

 if(checkCollision(dynamic_cast<SDLGameObject*>
 (m_gameObjects[0]), dynamic_cast<SDLGameObject*>
 (m_gameObjects[1])))
 {
 TheGame::Instance()->getStateMachine()->pushState(new
 GameOverState());
 }
}

We have to use a dynamic_cast object to cast our GameObject* class to an
SDLGameObject* class. If checkCollision returns true, then we add the
GameOverState class. The following screenshot shows the GameOver state:

Handling Game States

[130]

Summary
This chapter has left us with something a lot more like a game than in previous
chapters. We have created states for menus, pause, play, and game over with each
state having its own functionality and being handled using FSM. The Game class
now uses FSM to render and update game objects and it does not now handle
objects directly, as each individual state handles its own objects. We have also
created simple callback functions for our buttons using function pointers and
static functions.

Data-driven Design
With the previous chapter adding the ability to create and handle game states, our
framework has really begun to take shape. In this chapter, we will explore a new
way to create our states and objects by removing the need to hardcode the creation
of our objects at compile time. To do this we will parse through an external file, in
our case an XML file, which lists all of the objects needed for our state. This will
make our states generic as they can be completely different simply by loading up
an alternate XML file. Taking PlayState as an example, when creating a new level
we would need to create a new state with different objects and set up objects we
want for that level. If we could instead load the objects from an external file, we
could reuse the same PlayState and simply load the correct file depending on the
current level we want. Keeping classes generic like this and loading external data to
determine their state is called Data-driven Design.

In this chapter we will cover:

•	 Loading XML files using the TinyXML library
•	 Creating a Distributed Factory
•	 Loading objects dynamically using the factory and an XML file
•	 Parsing a state from an XML file
•	 Fitting everything together into the framework

Loading XML files
I have chosen to use XML files because they are so easy to parse. We are not going
to write our own XML parser, rather we will use an open source library called
TinyXML. TinyXML was written by Lee Thomason and is available under the zlib
license from http://sourceforge.net/projects/tinyxml/.

Data-driven Design

[132]

Once downloaded the only setup we need to do is to include a few of the files in
our project:

•	 tinyxmlerror.cpp

•	 tinyxmlparser.cpp

•	 tinystr.cpp

•	 tinystr.h

•	 tinyxml.cpp

•	 tinyxml.h

Also, at the top of tinyxml.h, add this line of code:

#define TIXML_USE_STL

By doing this we ensure that we are using the STL versions of the TinyXML
functions. We can now go through a little of how an XML file is structured. It's
actually fairly simple and we will only give a brief overview to help you get up
to speed with how we will use it.

Basic XML structure
Here is a basic XML file:

<?xml version="1.0" ?>
<ROOT>
 <ELEMENT>
 </ELEMENT>
</ROOT>

The first line of the file defines the format of the XML file. The second line is our Root
element; everything else is a child of this element. The third line is the first child of
the root element. Now let's look at a slightly more complicated XML file:

<?xml version="1.0" ?>
<ROOT>
 <ELEMENTS>
 <ELEMENT>Hello,</ELEMENT>
 <ELEMENT> World!</ELEMENT>
 </ELEMENTS>
</ROOT>

Chapter 6

[133]

As you can see we have now added children to the first child element. You can nest
as many children as you like. But without a good structure, your XML file may
become very hard to read. If we were to parse the above file, here are the steps we
would take:

1.	 Load the XML file.
2.	 Get the root element, <ROOT>.
3.	 Get the first child of the root element, <ELEMENTS>.
4.	 For each child, <ELEMENT> of <ELEMENTS>, get the content.
5.	 Close the file.

Another useful XML feature is the use of attributes. Here is an example:

<ROOT>
 <ELEMENTS>
 <ELEMENT text="Hello,"/>
 <ELEMENT text=" World!"/>
 </ELEMENTS>
</ROOT>

We have now stored the text we want in an attribute named text. When this file
is parsed, we would now grab the text attribute for each element and store that
instead of the content between the <ELEMENT></ELEMENT> tags. This is especially
useful for us as we can use attributes to store lots of different values for our objects.
So let's look at something closer to what we will use in our game:

<?xml version="1.0" ?>
<STATES>

<!--The Menu State-->
<MENU>
<TEXTURES>
 <texture filename="button.png" ID="playbutton"/>
 <texture filename="exit.png" ID="exitbutton"/>
</TEXTURES>

<OBJECTS>
 <object type="MenuButton" x="100" y="100" width="400"
 height="100" textureID="playbutton"/>
 <object type="MenuButton" x="100" y="300" width="400"
 height="100" textureID="exitbutton"/>
</OBJECTS>
</MENU>

Data-driven Design

[134]

<!--The Play State-->
<PLAY>
</PLAY>

<!-- The Game Over State -->
<GAMEOVER>
</GAMEOVER>
</STATES>

This is slightly more complex. We define each state in its own element and within
this element we have objects and textures with various attributes. These attributes
can be loaded in to create the state.

With this knowledge of XML you can easily create your own file structures if what
we cover within this book is not to your needs.

Implementing Object Factories
We are now armed with a little XML knowledge but before we move forward, we are
going to take a look at Object Factories. An object factory is a class that is tasked with
the creation of our objects. Essentially, we tell the factory the object we would like it
to create and it goes ahead and creates a new instance of that object and then returns
it. We can start by looking at a rudimentary implementation:

GameObject* GameObjectFactory::createGameObject(ID id)
{
 switch(id)
 {
 case "PLAYER":
 return new Player();
 break;

 case "ENEMY":
 return new Enemy();
 break;

 // lots more object types
 }
}

Chapter 6

[135]

This function is very simple. We pass in an ID for the object and the factory uses
a big switch statement to look it up and return the correct object. Not a terrible
solution but also not a particularly good one, as the factory will need to know about
each type it needs to create and maintaining the switch statement for many different
objects would be extremely tedious. Just as when we covered looping through game
objects in Chapter 3, Working with Game Objects, we want this factory not to care about
which type we ask for. It shouldn't need to know all of the specific types we want it
to create. Luckily this is something that we can definitely achieve.

Using Distributed Factories
Through the use of Distributed Factories we can make a generic object factory that
will create any of our types. Distributed factories allow us to dynamically maintain
the types of objects we want our factory to create, rather than hard code them into a
function (like in the preceding simple example). The approach we will take is to have
the factory contain std::map that maps a string (the type of our object) to a small
class called Creator whose only purpose is the creation of a specific object. We will
register a new type with the factory using a function that takes a string (the ID) and
a Creator class and adds them to the factory's map. We are going to start with the
base class for all the Creator types. Create GameObjectFactory.h and declare this
class at the top of the file.

#include <string>
#include <map>
#include "GameObject.h"

class BaseCreator
{
 public:

 virtual GameObject* createGameObject() const = 0;
 virtual ~BaseCreator() {}
};

We can now go ahead and create the rest of our factory and then go through it piece
by piece.

class GameObjectFactory
{
 public:

 bool registerType(std::string typeID, BaseCreator* pCreator)
 {
 std::map<std::string, BaseCreator*>::iterator it =

Data-driven Design

[136]

 m_creators.find(typeID);

 // if the type is already registered, do nothing
 if(it != m_creators.end())
 {
 delete pCreator;
 return false;
 }

 m_creators[typeID] = pCreator;

 return true;
 }

 GameObject* create(std::string typeID)
 {
 std::map<std::string, BaseCreator*>::iterator it =
 m_creators.find(typeID);

 if(it == m_creators.end())
 {
 std::cout << "could not find type: " << typeID << "\n";
 return NULL;
 }

 BaseCreator* pCreator = (*it).second;
 return pCreator->createGameObject();
 }

 private:

 std::map<std::string, BaseCreator*> m_creators;

};

This is quite a small class but it is actually very powerful. We will cover each part
separately starting with std::map m_creators.

std::map<std::string, BaseCreator*> m_creators;

This map holds the important elements of our factory, the functions of the class
essentially either add or remove from this map. This becomes apparent when we
look at the registerType function:

bool registerType(std::string typeID, BaseCreator* pCreator)

Chapter 6

[137]

This function takes the ID we want to associate the object type with (as a string), and
the creator object for that class. The function then attempts to find the type using the
std::mapfind function:

std::map<std::string, BaseCreator*>::iterator it =
m_creators.find(typeID);

If the type is found then it is already registered. The function then deletes the passed
in pointer and returns false:

if(it != m_creators.end())
{
 delete pCreator;
 return false;
}

If the type is not already registered then it can be assigned to the map and then true
is returned:

m_creators[typeID] = pCreator;
return true;
}

As you can see, the registerType function is actually very simple; it is just a way to
add types to the map. The create function is very similar:

GameObject* create(std::string typeID)
{
 std::map<std::string, BaseCreator*>::iterator it =
 m_creators.find(typeID);

 if(it == m_creators.end())
 {
 std::cout << "could not find type: " << typeID << "\n";
 return 0;
 }

 BaseCreator* pCreator = (*it).second;
 return pCreator->createGameObject();
}

The function looks for the type in the same way as registerType does, but this time
it checks whether the type was not found (as opposed to found). If the type is not
found we return 0, and if the type is found then we use the Creator object for that
type to return a new instance of it as a pointer to GameObject.

Data-driven Design

[138]

It is worth noting that the GameObjectFactory class should probably be a singleton.
We won't cover how to make it a singleton as this has been covered in the previous
chapters. Try implementing it yourself or see how it is implemented in the source
code download.

Fitting the factory into the framework
With our factory now in place, we can start altering our GameObject classes to use it.
Our first step is to ensure that we have a Creator class for each of our objects. Here
is one for Player:

class PlayerCreator : public BaseCreator
{
 GameObject* createGameObject() const
 {
 return new Player();
 }
};

This can be added to the bottom of the Player.h file. Any object we want the factory
to create must have its own Creator implementation. Another addition we must
make is to move LoaderParams from the constructor to their own function called
load. This stops the need for us to pass the LoaderParams object to the factory itself.
We will put the load function into the GameObject base class, as we want every
object to have one.

class GameObject
{
 public:

 virtual void draw()=0;
 virtual void update()=0;
 virtual void clean()=0;

 // new load function
 virtual void load(const LoaderParams* pParams)=0;

 protected:

 GameObject() {}
 virtual ~GameObject() {}
};

Chapter 6

[139]

Each of our derived classes will now need to implement this load function. The
SDLGameObject class will now look like this:

SDLGameObject::SDLGameObject() : GameObject()
{
}

voidSDLGameObject::load(const LoaderParams *pParams)
{
 m_position = Vector2D(pParams->getX(),pParams->getY());
 m_velocity = Vector2D(0,0);
 m_acceleration = Vector2D(0,0);
 m_width = pParams->getWidth();
 m_height = pParams->getHeight();
 m_textureID = pParams->getTextureID();
 m_currentRow = 1;
 m_currentFrame = 1;
 m_numFrames = pParams->getNumFrames();
}

Our objects that derive from SDLGameObject can use this load function as well; for
example, here is the Player::load function:

Player::Player() : SDLGameObject()
{

}

void Player::load(const LoaderParams *pParams)
{
 SDLGameObject::load(pParams);
}

This may seem a bit pointless but it actually saves us having to pass through
LoaderParams everywhere. Without it, we would need to pass LoaderParams
through the factory's create function which would then in turn pass it through
to the Creator object. We have eliminated the need for this by having a specific
function that handles parsing our loading values. This will make more sense once
we start parsing our states from a file.

Data-driven Design

[140]

We have another issue which needs rectifying; we have two classes with extra
parameters in their constructors (MenuButton and AnimatedGraphic). Both classes
take an extra parameter as well as LoaderParams. To combat this we will add these
values to LoaderParams and give them default values.

LoaderParams(int x, int y, int width, int height, std::string
textureID, int numFrames, int callbackID = 0, int animSpeed = 0) :
m_x(x),
m_y(y),
m_width(width),
m_height(height),
m_textureID(textureID),
m_numFrames(numFrames),
m_callbackID(callbackID),
m_animSpeed(animSpeed)
{

}

In other words, if the parameter is not passed in, then the default values will be used
(0 in both cases). Rather than passing in a function pointer as MenuButton did, we
are using callbackID to decide which callback function to use within a state. We can
now start using our factory and parsing our states from an XML file.

Parsing states from an XML file
The file we will be parsing is the following (test.xml in source code downloads):

<?xml version="1.0" ?>
<STATES>
<MENU>
<TEXTURES>
 <texture filename="assets/button.png" ID="playbutton"/>
 <texture filename="assets/exit.png" ID="exitbutton"/>
</TEXTURES>

<OBJECTS>
 <object type="MenuButton" x="100" y="100" width="400"
 height="100" textureID="playbutton" numFrames="0"
 callbackID="1"/>
 <object type="MenuButton" x="100" y="300" width="400"
 height="100" textureID="exitbutton" numFrames="0"
 callbackID="2"/>
</OBJECTS>
</MENU>

Chapter 6

[141]

<PLAY>
</PLAY>

<GAMEOVER>
</GAMEOVER>
</STATES>

We are going to create a new class that parses our states for us called StateParser.
The StateParser class has no data members, it is to be used once in the onEnter
function of a state and then discarded when it goes out of scope. Create a
StateParser.h file and add the following code:

#include <iostream>
#include <vector>
#include "tinyxml.h"

class GameObject;

class StateParser
{
 public:

 bool parseState(const char* stateFile, std::string stateID,
 std::vector<GameObject*> *pObjects);

 private:

 void parseObjects(TiXmlElement* pStateRoot,
 std::vector<GameObject*> *pObjects);
 void parseTextures(TiXmlElement* pStateRoot,
 std::vector<std::string> *pTextureIDs);

};

We have three functions here, one public and two private. The parseState
function takes the filename of an XML file as a parameter, along with the current
stateID value and a pointer to std::vector of GameObject* for that state. The
StateParser.cpp file will define this function:

bool StateParser::parseState(const char *stateFile, string
stateID, vector<GameObject *> *pObjects, std::vector<std::string>
*pTextureIDs)
{
 // create the XML document
 TiXmlDocument xmlDoc;

 // load the state file

Data-driven Design

[142]

 if(!xmlDoc.LoadFile(stateFile))
 {
 cerr << xmlDoc.ErrorDesc() << "\n";
 return false;
 }

 // get the root element
 TiXmlElement* pRoot = xmlDoc.RootElement();

 // pre declare the states root node
 TiXmlElement* pStateRoot = 0;
 // get this states root node and assign it to pStateRoot
 for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
 e->NextSiblingElement())
 {
 if(e->Value() == stateID)
 {
 pStateRoot = e;
 }
 }

 // pre declare the texture root
 TiXmlElement* pTextureRoot = 0;

 // get the root of the texture elements
 for(TiXmlElement* e = pStateRoot->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {
 if(e->Value() == string("TEXTURES"))
 {
 pTextureRoot = e;
 }
 }

 // now parse the textures
 parseTextures(pTextureRoot, pTextureIDs);

 // pre declare the object root node
 TiXmlElement* pObjectRoot = 0;

 // get the root node and assign it to pObjectRoot
 for(TiXmlElement* e = pStateRoot->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {

Chapter 6

[143]

 if(e->Value() == string("OBJECTS"))
 {
 pObjectRoot = e;
 }
 }

 // now parse the objects
 parseObjects(pObjectRoot, pObjects);

 return true;
}

There is a lot of code in this function so it is worth covering in some depth. We
will note the corresponding part of the XML file, along with the code we use, to
obtain it. The first part of the function attempts to load the XML file that is passed
into the function:

// create the XML document
TiXmlDocument xmlDoc;

// load the state file
if(!xmlDoc.LoadFile(stateFile))
{
 cerr << xmlDoc.ErrorDesc() << "\n";
 return false;
}

It displays an error to let you know what happened if the XML loading fails. Next we
must grab the root node of the XML file:

// get the root element
TiXmlElement* pRoot = xmlDoc.RootElement(); // <STATES>

The rest of the nodes in the file are all children of this root node. We must now get
the root node of the state we are currently parsing; let's say we are looking for MENU:

// declare the states root node
TiXmlElement* pStateRoot = 0;
// get this states root node and assign it to pStateRoot
for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
e->NextSiblingElement())
{
 if(e->Value() == stateID)
 {

Data-driven Design

[144]

 pStateRoot = e;
 }
}

This piece of code goes through each direct child of the root node and checks
if its name is the same as stateID. Once it finds the correct node it assigns it to
pStateRoot. We now have the root node of the state we want to parse.

<MENU> // the states root node

Now that we have a pointer to the root node of our state we can start to grab values
from it. First we want to load the textures from the file so we look for the <TEXTURE>
node using the children of the pStateRoot object we found before:

// pre declare the texture root
TiXmlElement* pTextureRoot = 0;

// get the root of the texture elements
for(TiXmlElement* e = pStateRoot->FirstChildElement(); e != NULL;
e = e->NextSiblingElement())
{
 if(e->Value() == string("TEXTURES"))
 {
 pTextureRoot = e;
 }
}

Once the <TEXTURE> node is found, we can pass it into the private parseTextures
function (which we will cover a little later).

parseTextures(pTextureRoot, std::vector<std::string>
*pTextureIDs);

The function then moves onto searching for the <OBJECT> node and, once found,
it passes it into the private parseObjects function. We also pass in the pObjects
parameter:

 // pre declare the object root node
 TiXmlElement* pObjectRoot = 0;

 // get the root node and assign it to pObjectRoot
 for(TiXmlElement* e = pStateRoot->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {
 if(e->Value() == string("OBJECTS"))
 {
 pObjectRoot = e;

Chapter 6

[145]

 }
 }
 parseObjects(pObjectRoot, pObjects);
 return true;
}

At this point our state has been parsed. We can now cover the two private functions,
starting with parseTextures.

void StateParser::parseTextures(TiXmlElement* pStateRoot,
std::vector<std::string> *pTextureIDs)
{
 for(TiXmlElement* e = pStateRoot->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {
 string filenameAttribute = e->Attribute("filename");
 string idAttribute = e->Attribute("ID");
 pTextureIDs->push_back(idAttribute); // push into list

 TheTextureManager::Instance()->load(filenameAttribute,
 idAttribute, TheGame::Instance()->getRenderer());
 }
}

This function gets the filename and ID attributes from each of the texture values in
this part of the XML:

<TEXTURES>
 <texture filename="button.png" ID="playbutton"/>
 <texture filename="exit.png" ID="exitbutton"/>
</TEXTURES>

It then adds them to TextureManager.

TheTextureManager::Instance()->load(filenameAttribute,
idAttribute, TheGame::Instance()->getRenderer());

The parseObjects function is quite a bit more complicated. It creates objects using
our GameObjectFactory function and reads from this part of the XML file:

<OBJECTS>
 <object type="MenuButton" x="100" y="100" width="400"
 height="100" textureID="playbutton" numFrames="0"
 callbackID="1"/>
 <object type="MenuButton" x="100" y="300" width="400"
 height="100" textureID="exitbutton" numFrames="0"
 callbackID="2"/>
</OBJECTS>

Data-driven Design

[146]

The parseObjects function is defined like so:

void StateParser::parseObjects(TiXmlElement *pStateRoot,
std::vector<GameObject *> *pObjects)
{
 for(TiXmlElement* e = pStateRoot->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {
 int x, y, width, height, numFrames, callbackID, animSpeed;
 string textureID;

 e->Attribute("x", &x);
 e->Attribute("y", &y);
 e->Attribute("width",&width);
 e->Attribute("height", &height);
 e->Attribute("numFrames", &numFrames);
 e->Attribute("callbackID", &callbackID);
 e->Attribute("animSpeed", &animSpeed);

 textureID = e->Attribute("textureID");

 GameObject* pGameObject = TheGameObjectFactory::Instance()
 ->create(e->Attribute("type"));
 pGameObject->load(new LoaderParams
 (x,y,width,height,textureID,numFrames,callbackID, animSpeed));
 pObjects->push_back(pGameObject);
 }
}

First we get any values we need from the current node. Since XML files are pure text,
we cannot simply grab ints or floats from the file. TinyXML has functions with which
you can pass in the value you want to be set and the attribute name. For example:

e->Attribute("x", &x);

This sets the variable x to the value contained within attribute "x". Next comes the
creation of a GameObject* class using the factory.

GameObject* pGameObject = TheGameObjectFactory::Instance()-
>create(e->Attribute("type"));

We pass in the value from the type attribute and use that to create the correct object
from the factory. After this we must use the load function of GameObject to set our
desired values using the values loaded from the XML file.

pGameObject->load(new
LoaderParams(x,y,width,height,textureID,numFrames,callbackID));

Chapter 6

[147]

And finally we push pGameObject into the pObjects array, which is actually a
pointer to the current state's object vector.

pObjects->push_back(pGameObject);

Loading the menu state from an XML file
We now have most of our state loading code in place and can make use of this in the
MenuState class. First we must do a little legwork and set up a new way of assigning
the callbacks to our MenuButton objects, since this is not something we could pass in
from an XML file. The approach we will take is to give any object that wants to make
use of a callback an attribute named callbackID in the XML file. Other objects do not
need this value and LoaderParams will use the default value of 0. The MenuButton
class will make use of this value and pull it from its LoaderParams, like so:

void MenuButton::load(const LoaderParams *pParams)
{
 SDLGameObject::load(pParams);
 m_callbackID = pParams->getCallbackID();
 m_currentFrame = MOUSE_OUT;
}

The MenuButton class will also need two other functions, one to set the callback
function and another to return its callback ID:

void setCallback(void(*callback)()) { m_callback = callback;}
int getCallbackID() { return m_callbackID; }

Next we must create a function to set callbacks. Any state that uses objects with
callbacks will need an implementation of this function. The most likely states to have
callbacks are menu states, so we will rename our MenuState class to MainMenuState
and make MenuState an abstract class that extends from GameState. The class will
declare a function that sets the callbacks for any items that need it and it will also
have a vector of the Callback objects as a member; this will be used within the
setCallbacks function for each state.

class MenuState : public GameState
{
 protected:

 typedef void(*Callback)();
 virtual void setCallbacks(const std::vector<Callback>& callbacks)
 = 0;

 std::vector<Callback> m_callbacks;
};

Data-driven Design

[148]

The MainMenuState class (previously MenuState) will now derive from this
MenuState class.

#include "MenuState.h"
#include "GameObject.h"

class MainMenuState : public MenuState
{
 public:

 virtual void update();
 virtual void render();

 virtual bool onEnter();
 virtual bool onExit();

 virtual std::string getStateID() const { return s_menuID; }

 private:

 virtual void setCallbacks(const std::vector<Callback>&
 callbacks);

 // call back functions for menu items
 static void s_menuToPlay();
 static void s_exitFromMenu();

 static const std::string s_menuID;

 std::vector<GameObject*> m_gameObjects;
};

Because MainMenuState now derives from MenuState, it must of course declare and
define the setCallbacks function. We are now ready to use our state parsing to load
the MainMenuState class. Our onEnter function will now look like this:

bool MainMenuState::onEnter()
{
 // parse the state
 StateParser stateParser;
 stateParser.parseState("test.xml", s_menuID, &m_gameObjects,
 &m_textureIDList);

Chapter 6

[149]

 m_callbacks.push_back(0); //pushback 0 callbackID start from 1
 m_callbacks.push_back(s_menuToPlay);
 m_callbacks.push_back(s_exitFromMenu);

 // set the callbacks for menu items
 setCallbacks(m_callbacks);

 std::cout << "entering MenuState\n";
 return true;
}

We create a state parser and then use it to parse the current state. We push any
callbacks into the m_callbacks array inherited from MenuState. Now we need
to define the setCallbacks function:

void MainMenuState::setCallbacks(const std::vector<Callback>&
callbacks)
{
 // go through the game objects
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 // if they are of type MenuButton then assign a callback
 based on the id passed in from the file
 if(dynamic_cast<MenuButton*>(m_gameObjects[i]))
 {
 MenuButton* pButton =
 dynamic_cast<MenuButton*>(m_gameObjects[i]);
 pButton->setCallback(callbacks[pButton->getCallbackID()]);
 }
 }
}

We use dynamic_cast to check whether the object is a MenuButton type; if it
is then we do the actual cast and then use the objects callbackID as the index
into the callbacks vector and assign the correct function. While this method of
assigning callbacks could be seen as not very extendable and could possibly be
better implemented, it does have a redeeming feature; it allows us to keep our
callbacks inside the state they will need to be called from. This means that we
won't need a huge header file with all of the callbacks in.

Data-driven Design

[150]

One last alteration we need is to add a list of texture IDs to each state so that we can
clear all of the textures that were loaded for that state. Open up GameState.h and we
will add a protected variable.

protected:
std::vector<std::string> m_textureIDList;

We will pass this into the state parser in onEnter and then we can clear any used
textures in the onExit function of each state, like so:

// clear the texture manager
for(int i = 0; i < m_textureIDList.size(); i++)
{
 TheTextureManager::Instance()->
 clearFromTextureMap(m_textureIDList[i]);
}

Before we start running the game we need to register our MenuButton type with the
GameObjectFactory. Open up Game.cpp and in the Game::init function we can
register the type.

TheGameObjectFactory::Instance()->registerType("MenuButton", new
MenuButtonCreator());

We can now run the game and see our fully data-driven MainMenuState.

Loading other states from an XML file
Our MainMenuState class now loads from an XML file. We need to make our other
states do the same. We will only cover the code that has changed, so assume that
everything else has remained the same when following through this section.

Loading the play state
We will start with PlayState.cpp and its onEnter function.

bool PlayState::onEnter()
{
 // parse the state
 StateParser stateParser;
 stateParser.parseState("test.xml", s_playID, &m_gameObjects,
 &m_textureIDList);

 std::cout << "entering PlayState\n";
 return true;
}

Chapter 6

[151]

We must also add the new texture clearing code that we had in MainMenuState to
the onExit function.

// clear the texture manager
for(int i = 0; i < m_textureIDList.size(); i++)
{
 TheTextureManager::Instance()->
 clearFromTextureMap(m_textureIDList[i]);
}

These are the only alterations that we will need to do here but we must also update
our XML file to have something to load in PlayState.

<PLAY>
<TEXTURES>
 <texture filename="helicopter.png" ID="helicopter"/>
 <texture filename="helicopter2.png" ID="helicopter2"/>
</TEXTURES>

<OBJECTS>
 <object type="Player" x="500" y="100" width="128" height="55"
 textureID="helicopter" numFrames="4"/>
 <object type="Enemy" x="100" y="100" width="128" height="55"
 textureID="helicopter2" numFrames="4"/>
</OBJECTS>
</PLAY>

Our Enemy object will now need to set its initial velocity in its load function rather
than the constructor, otherwise the load function would override it.

void Enemy::load(const LoaderParams *pParams)
{
 SDLGameObject::load(pParams);
 m_velocity.setY(2);
}

Finally we must register these objects with the factory. We can do this in the
Game::init function just like the MenuButton object.

TheGameObjectFactory::Instance()->registerType("Player", new
PlayerCreator());
TheGameObjectFactory::Instance()->registerType("Enemy", new
EnemyCreator());

Data-driven Design

[152]

Loading the pause state
Our PauseState class must now inherit from MenuState as we want it to contain
callbacks. We must update the PauseState.h file to first inherit from MenuState.

class PauseState : public MenuState

We must also declare the setCallbacks function.

virtual void setCallbacks(const std::vector<Callback>& callbacks);

Now we must update the PauseState.cpp file, starting with the onEnter function.

bool PauseState::onEnter()
{
 StateParser stateParser;
 stateParser.parseState("test.xml", s_pauseID, &m_gameObjects,
 &m_textureIDList);

 m_callbacks.push_back(0);
 m_callbacks.push_back(s_pauseToMain);
 m_callbacks.push_back(s_resumePlay);

 setCallbacks(m_callbacks);

 std::cout << "entering PauseState\n";
 return true;
}

The setCallbacks function is exactly like MainMenuState.

void PauseState::setCallbacks(const std::vector<Callback>&
callbacks)
{
 // go through the game objects
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 // if they are of type MenuButton then assign a callback based
 on the id passed in from the file
 if(dynamic_cast<MenuButton*>(m_gameObjects[i]))
 {
 MenuButton* pButton =
 dynamic_cast<MenuButton*>(m_gameObjects[i]);
 pButton->setCallback(callbacks[pButton->getCallbackID()]);
 }
 }
}

Chapter 6

[153]

Finally we must add the texture clearing code to onExit.

// clear the texture manager
for(int i = 0; i < m_textureIDList.size(); i++)
{
 TheTextureManager::Instance()->
 clearFromTextureMap(m_textureIDList[i]);
}

And then update our XML file to include this state.

<PAUSE>
<TEXTURES>
 <texture filename="resume.png" ID="resumebutton"/>
 <texture filename="main.png" ID="mainbutton"/>
</TEXTURES>

<OBJECTS>
 <object type="MenuButton" x="200" y="100" width="200"
 height="80" textureID="mainbutton" numFrames="0"
 callbackID="1"/>
 <object type="MenuButton" x="200" y="300" width="200"
 height="80" textureID="resumebutton" numFrames="0"
 callbackID="2"/>
</OBJECTS>
</PAUSE>

Loading the game over state
Our final state is GameOverState. Again this will be very similar to other states and
we will only cover what has changed. Since we want GameOverState to handle
callbacks it will now inherit from MenuState.

class GameOverState : public MenuState

We will then declare the setCallbacks function.

virtual void setCallbacks(const std::vector<Callback>& callbacks);

The onEnter function should be looking very familiar now.

bool GameOverState::onEnter()
{
 // parse the state
 StateParser stateParser;
 stateParser.parseState("test.xml", s_gameOverID, &m_gameObjects,
 &m_textureIDList);

Data-driven Design

[154]

 m_callbacks.push_back(0);
 m_callbacks.push_back(s_gameOverToMain);
 m_callbacks.push_back(s_restartPlay);

 // set the callbacks for menu items
 setCallbacks(m_callbacks);

 std::cout << "entering PauseState\n";
 return true;
}

The texture clearing method is the same as in the previous states, so we will leave
you to implement that yourself. In fact onExit is looking so similar between states
that it would be a good idea to make a generic implementation for it in GameState
and just use that; again we will leave that to you.

You may have noticed the similarity between the onEnter functions. It would be
great to have a default onEnter implementation but, unfortunately, due to the need
to specify different callback functions, our callback implementation will not allow
this and this is one of its main flaws.

Our AnimatedGraphic class will now need to grab the animSpeed value from
LoaderParams in its load function.

void AnimatedGraphic::load(const LoaderParams *pParams)
{
 SDLGameObject::load(pParams);
 m_animSpeed = pParams->getAnimSpeed();
}

We will also have to register this type with GameObjectFactory.

TheGameObjectFactory::Instance()->registerType("AnimatedGraphic",
new AnimatedGraphicCreator());

And finally we can update the XML file to include this state:

<GAMEOVER>
<TEXTURES>
 <texture filename="gameover.png" ID="gameovertext"/>
 <texture filename="main.png" ID="mainbutton"/>
 <texture filename="restart.png" ID="restartbutton"/>
</TEXTURES>

<OBJECTS>

Chapter 6

[155]

 <object type="AnimatedGraphic" x="200" y="100" width="190"
 height="30" textureID="gameovertext" numFrames="2"
 animSpeed="2"/>
 <object type="MenuButton" x="200" y="200" width="200"
 height="80" textureID="mainbutton" numFrames="0"
 callbackID="1"/>
 <object type="MenuButton" x="200" y="300" width="200"
 height="80" textureID="restartbutton" numFrames="0"
 callbackID="2"/>
</OBJECTS>
</GAMEOVER>

We now have all of our states loading from the XML file and one of the biggest
benefits of this is that you do not have to recompile the game when you change a
value. Go ahead and change the XML file to move positions or even use different
textures for objects; if the XML is saved then you can just run the game again and
it will use the new values. This is a huge time saver for us and gives us complete
control over a state without the need to recompile our game.

Summary
Loading data from external files is an extremely useful tool in programming games.
This chapter enabled our game to do this and applied it to all of our existing states.
We also covered how the use of factories enabled us to create objects dynamically
at runtime. The next chapter will cover even more data-driven design as well as tile
maps so that we can really decouple our game and allow it to use external sources
rather than hardcoded values.

Creating and Displaying
Tile Maps

Most 2D games that you have played in the past made use of tile maps. It is an
extremely efficient and fast way to develop complex 2D levels or scenes. Even if a
game has more complex graphical content, it is likely that it will still make use of
tiles in some way. Throughout this chapter we will be using the tiled map editor,
an open source and cross-platform tool created by Thorbjørn Lindeijer and a large
open source community. It is available at http://www.mapeditor.org/. We will
essentially make this tool our level editor and use it for creating maps and placing
our objects within those maps.

In this chapter we will cover:

•	 What a tile map is
•	 What a tile sheet looks like
•	 Using the tiled map editor to create our maps
•	 Parsing a state from a tiled map
•	 Loading and displaying a tile-based map in SDL 2.0

Creating and Displaying Tile Maps

[158]

What is a tile map?
If you have played a lot of 2D games then you will be very familiar with tile maps.
We will start by looking at an example in the form of the following screenshot:

This 20 x 15 tile map was made using the following screenshot called a tileset.

Chapter 7

[159]

As you can see, one huge advantage to a tile system like this is that you can
create large maps from relatively small image files. Tile maps are essentially a
multidimensional array of IDs that tell us which part of the tileset we want to
draw at each location. It will help to look at the images again with their IDs in
place as shown in the following screenshot:

Here is the tileset with its IDs in place as shown in the preceding screenshot.

To draw the map we loop through the number of columns and the number of rows,
grab the correct tile using its ID, and draw it to the screen. Any tile with an ID of zero
will not be drawn (a blank tile). This can be seen in the preceding screenshot.

Creating and Displaying Tile Maps

[160]

Getting familiar with the Tiled application
Tiled is a very user-friendly application that can greatly speed up our development
time. Once you have downloaded and installed the application, open it up and you
will be presented with the user interface as shown in the following screenshot:

On the right-hand side we have the Layers and Tilesets views; the left-hand side will
contain our tile map. First we must create a new map, this can be done by navigating
to File | New… or Ctrl + N. This brings up the new map dialog as shown in the
following screenshot:

Chapter 7

[161]

Here we can define the size and type of our map. We are only going to use orthogonal
tile maps (as opposed to isometric), so go ahead and create an orthogonal tile map that
is 20 tiles wide and 15 tiles high, with tile width and height both set to 32 px. We can
now see our tile map in the left-hand side of the UI (Ctrl + G will show the grid). Tiled
will also automatically create a layer for us called Tile Layer 1 (Visible in the Layers
view on the right-hand side) as shown in the following screenshot:

We are not going to deal with any terrain so we can turn off that tab by navigating to
View | Terrains and unchecking. Save this map as map1.tmx in the same location as
the rest of our game assets. If you open this file you will see that it is actually just an
XML file:

<?xml version="1.0" encoding="UTF-8"?>
<map version="1.0" orientation="orthogonal" width="20" height="15"
 tilewidth="32" tileheight="32">
 <layer name="Tile Layer 1" width="20" height="15">
 <data encoding="base64" compression="zlib">
 eJxjYBgFo2AUjIKhAQAEsAAB
 </data>
 </layer>
</map>

Creating and Displaying Tile Maps

[162]

This should all look very familiar. Tiled has a few different compression algorithms
that can be used to store the tile IDs of our maps. The preceding file uses the zlib
compression algorithm along with base64 encoding which, as you can see, gives
great results:

<data encoding="base64" compression="zlib">
 eJxjYBgFo2AUjIKhAQAEsAAB
</data>

If we compare the same map with base64 encoding and no compression, we can
see that the extra work needed to decompress and parse the zlib compression is
definitely worth it. Here is the uncompressed map:

 <data encoding="base64">
AA
AA
AA
AA
AA
AAA
AA
AA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
</data>

Chapter 7

[163]

We will cover this in more depth once we start parsing the tile maps, but for now
let's look at adding a tileset. Navigate to Map | New Tileset… and it will bring up a
new Tileset dialog as shown in the following screenshot:

The tileset we will start with is blocks1.png as shown in the following screenshot,
available in the source downloads.

Creating and Displaying Tile Maps

[164]

Copy the image to the game assets location and then we can browse to it in the
New Tileset dialog. This tileset has a 2 pixel wide margin around the outside and
2 pixel spacing between each tile; each tile is 32 x 32 pixels. Once these values are
set, click on OK and the tileset will appear in the Tilesets view to the right-hand
side. We can now start to build our map using the provided tools as shown in the
following screenshot:

The red highlights are our bread-and-butter tools. The stamp tool adds the selected
tile from the tileset to the given location, the paint bucket fills an area with a selected
tile from the tileset, and the eraser tool, of course, erases. We can select tiles from the
tileset one at a time or many at a time, as shown in the following screenshot:

Go ahead and get acquainted with these tools by building a simple map. Once the
map is saved we will see that the tileset has been added to the map file:

<tileset firstgid="1" name="blocks1" tilewidth="32" tileheight="32"
 spacing="2" margin="2">
 <image source="assets/blocks1.png" width="614" height="376"/>
</tileset>

The firstgid attribute is the first tile ID that uses this tileset. If we were to have
more than one tileset, it would come with its own firstgid attribute so that we
knew which tile IDs to start associating with that tileset; again, we will cover this in
greater detail when we come to parse our maps. Add another tileset, blocks2.png
(also available in the source code downloads), to our map and we shall move into
drawing it in our game.

Chapter 7

[165]

Parsing and drawing a tile map
Now that we are relatively familiar with creating tile maps in the Tiled application
we will move on to parsing them and drawing them in our game. We are going to
create quite a few new classes starting with a class called Level that will hold our
tilesets and also draw and update our separate layers. Let's go ahead and create
Level.h in our project and add the following code:

class Level
{
 public:

 Level();
 ~Level() {}

 void update();
 void render();
};

We will also define a struct at the top of this file called Tileset:

struct Tileset
{
 int firstGridID;
 int tileWidth;
 int tileHeight;
 int spacing;
 int margin;
 int width;
 int height;
 int numColumns;
 std::string name;
};

This struct holds any information we need to know about our tilesets. Our Level
class will now also hold a vector of Tileset objects:

private:

 std::vector<Tileset> m_tilesets;

Next we will create a public getter function that returns a pointer to this Tileset
vector:

std::vector<Tileset>* getTilesets()
{
 return &m_tilesets;
}

Creating and Displaying Tile Maps

[166]

We will pass this into our parser when we come to load the map.

The next class we will create is an abstract base class called Layer. All of our layer
types will derive from this class. Create Layer.h and add the following code:

class Layer
{
 public:

 virtual void render() = 0;
 virtual void update() = 0;

 protected:

 virtual ~Layer() {}
};

Now that we have the Layer class we will store a vector of the Layer* objects in the
Level class. Back in Level.h add our vector:

std::vector<Layer*> m_layers;

And a getter function:

std::vector<Layer*>* getLayers()
{
 return &m_layers;
}

Now we have a basic Level class in place; its purpose is to store, draw, and update
our layers. We will define the functions for Level in a Level.cpp file:

void Level::render()
{
 for(int i = 0; i < m _layers.size(); i++)
 {
 m_layers[i]->render();
 }
}
void Level::update()
{
 for(int i = 0; i < m_layers.size(); i++)
 {
 m_layers[i]->update();
 }
}

Chapter 7

[167]

Creating the TileLayer class
Our first layer type is going to be a TileLayer. This type of layer is made up entirely
of tiles and does not contain anything else. We have already created a layer like this
in the Tiled application. Create TileLayer.h and we can start to write up this class:

class TileLayer : public Layer
{
 public:

 TileLayer(int tileSize, const std::vector<Tileset> &tilesets);

 virtual void update();
 virtual void render();

 void setTileIDs(const std::vector<std::vector<int>>& data)
 {
 m_tileIDs = data;
 }

 void setTileSize(int tileSize)
 {
 m_tileSize = tileSize;
 }

 Tileset getTilesetByID(int tileID);

 private:

 int m_numColumns;
 int m_numRows;
 int m_tileSize;

 Vector2D m_position;
 Vector2D m_velocity;

 const std::vector<Tileset> &m_tilesets;

 std::vector<std::vector<int>> m_tileIDs;
};

There is nothing too complicated about this class; it holds data for our tile layer. The
Vector2D variables are used when we start to scroll our maps. We will not define
this class' functions properly right now, but you will need to create empty definitions
along with defining the vector constants in a TileLayer.cpp file.

Creating and Displaying Tile Maps

[168]

Creating the LevelParser class
Now that we have the basic level and layer classes in place, we can move
onto creating a parser for our .tmx files and creating levels from them. Create
LevelParser.h:

Class LevelParser
{
 public:

 Level* parseLevel(const char* levelFile);

 private:

 void parseTilesets(TiXmlElement* pTilesetRoot,
 std::vector<Tileset>* pTilesets);

 void parseTileLayer(TiXmlElement* pTileElement,
 std::vector<Layer*> *pLayers, const std::vector<Tileset>*
 pTilesets);

 int m_tileSize;
 int m_width;
 int m_height;
};

The parseLevel function is what we will call whenever we want to create a level.
To ensure that this function must be used to create a Level object, we will make the
Level class' constructor private and make it a friend class of LevelParser:

private:

 friend class LevelParser;
 Level();

Now LevelParser has access to the private constructor of Level and can return new
instances. We can now define the parseLevel function and then go through it step-
by-step. Create LevelParser.cpp and define the parseLevel function as follows:

Level* LevelParser::parseLevel(const char *levelFile)
{
 // create a TinyXML document and load the map XML
 TiXmlDocument levelDocument;
 levelDocument.LoadFile(levelFile);

 // create the level object

Chapter 7

[169]

 Level* pLevel = new Level();

 // get the root node
 TiXmlElement* pRoot = levelDocument.RootElement();

 pRoot->Attribute("tilewidth", &m_tileSize);
 pRoot->Attribute("width", &m_width);
 pRoot->Attribute("height", &m_height);

 // parse the tilesets
 for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
 e->NextSiblingElement())
 {
 if(e->Value() == std::string("tileset"))
 {
 parseTilesets(e, pLevel->getTilesets());
 }
 }

 // parse any object layers
 for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
 e->NextSiblingElement())
 {
 if(e->Value() == std::string("layer"))
 {
 parseTileLayer(e, pLevel->getLayers(), pLevel->getTilesets());
 }
 }

 return pLevel;
}

We covered XML files and TinyXML in the previous chapter so I won't go into detail
again here. The first part of the function grabs the root node:

// get the root node
TiXmlElement* pRoot = levelDocument.RootElement();

We can see from the map file that this node has several attributes:

<map version="1.0" orientation="orthogonal" width="60" height="15"
 tilewidth="32" tileheight="32">

Creating and Displaying Tile Maps

[170]

We grab these values using the Attribute function from TinyXML and set the
member variables of LevelParser:

pRoot->Attribute("tilewidth", &m_tileSize);
pRoot->Attribute("width", &m_width);
pRoot->Attribute("height", &m_height);

Next we must check for any tileset nodes and parse them, using the getTilesets
function of our newly created Level instance to pass in the Tileset vector:

// parse the tilesets
for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
 e->NextSiblingElement())
{
 if(e->Value() == std::string("tileset"))
 {
 parseTilesets(e, pLevel->getTilesets());
 }
}

Finally we can check for any tile layers and then parse them, again using the getter
functions from our pLevel object, which we then return:

// parse any object layers
for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
 e->NextSiblingElement())
{
 if(e->Value() == std::string("layer"))
 {
 parseTileLayer(e, pLevel->getLayers(), pLevel->getTilesets());
 }
}

return pLevel;
}

You can see that this function is very similar to our parseState function
from the previous chapter. Now we must define the parseTilesets and
parseTileLayer functions.

Parsing tilesets
Parsing tilesets is actually quite simple due to our TextureManager class:

void LevelParser::parseTilesets(TiXmlElement* pTilesetRoot,
 std::vector<Tileset>* pTilesets)
{

Chapter 7

[171]

 // first add the tileset to texture manager
 TheTextureManager::Instance()->load(pTilesetRoot-
 >FirstChildElement()->Attribute("source"), pTilesetRoot-
 >Attribute("name"), TheGame::Instance()->getRenderer());

 // create a tileset object
 Tileset tileset;
 pTilesetRoot->FirstChildElement()->Attribute("width",
 &tileset.width);
 pTilesetRoot->FirstChildElement()->Attribute("height",
 &tileset.height);
 pTilesetRoot->Attribute("firstgid", &tileset.firstGridID);
 pTilesetRoot->Attribute("tilewidth", &tileset.tileWidth);
 pTilesetRoot->Attribute("tileheight", &tileset.tileHeight);
 pTilesetRoot->Attribute("spacing", &tileset.spacing);
 pTilesetRoot->Attribute("margin", &tileset.margin);
 tileset.name = pTilesetRoot->Attribute("name");

 tileset.numColumns = tileset.width / (tileset.tileWidth +
 tileset.spacing);

 pTilesets->push_back(tileset);
}

We add the tileset to the TextureManager class using its attributes and then create
a Tileset object and push it into the pTilesets array. The pTilesets array is
actually a pointer to the array from our pLevel object which we previously created
in the parseLevel function. Here is our first tileset so that you can look at it
alongside the preceding function:

<tileset firstgid="1" name="blocks1" tilewidth="32" tileheight="32"
 spacing="2" margin="2">
 <image source="blocks1.png" width="614" height="376"/>
</tileset>

Parsing a tile layer
Due to the compression and encoding of our tile IDs, this function is actually quite
complicated. We are going to make use of a few different libraries that will help us
to decode and decompress our data, the first of which is a Base64 decoder. We will
be using a decoder created by René Nyffenegger, available from the source code
downloads and also from https://github.com/ReneNyffenegger/development_
misc/tree/master/base64. The base64.h and base64.cpp files can be added
directly to the project.

Creating and Displaying Tile Maps

[172]

The second library we will need is the zlib library, a compiled version is available at
http://www.zlib.net and can be easily added to your project like any other library.
Once these libraries are available to the project we can start parsing our tiles:

void LevelParser::parseTileLayer(TiXmlElement* pTileElement,
 std::vector<Layer*> *pLayers, const std::vector<Tileset>*
 pTilesets)
{
 TileLayer* pTileLayer = new TileLayer(m_tileSize, *pTilesets);

 // tile data
 std::vector<std::vector<int>> data;

 std::string decodedIDs;
 TiXmlElement* pDataNode;

 for(TiXmlElement* e = pTileElement->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {
 if(e->Value() == std::string("data"))
 {
 pDataNode = e;
 }
 }

 for(TiXmlNode* e = pDataNode->FirstChild(); e != NULL; e =
 e->NextSibling())
 {
 TiXmlText* text = e->ToText();
 std::string t = text->Value();
 decodedIDs = base64_decode(t);
 }

 // uncompress zlib compression
 uLongf numGids = m_width * m_height * sizeof(int);
 std::vector<unsigned> gids(numGids);
 uncompress((Bytef*)&gids[0], &numGids,(const
 Bytef*)decodedIDs.c_str(), decodedIDs.size());

 std::vector<int> layerRow(m_width);

 for(int j = 0; j < m_height; j++)
 {
 data.push_back(layerRow);
 }

 for(int rows = 0; rows < m_height; rows++)

Chapter 7

[173]

 {
 for(int cols = 0; cols < m_width; cols++)
 {
 data[rows][cols] = gids[rows * m_width + cols];
 }
 }

 pTileLayer->setTileIDs(data);

 pLayers->push_back(pTileLayer);
}

Let's go through this function step-by-step. First we create a new
TileLayer instance:

TileLayer* pTileLayer = new TileLayer(m_tileSize, *pTilesets);

Next we declare some needed variables; a multidimensional array of int
values to hold our final decoded and uncompressed tile data, a std::string
that will be our base64 decoded information and finally a place to store our
XML node once we find it:

// tiledata
std::vector<std::vector<int>> data;

std::string decodedIDs;
TiXmlElement* pDataNode;

We can search for the node we need in the same way we have previously done:

for(TiXmlElement* e = pTileElement->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
{
 if(e->Value() == std::string("data"))
 {
 pDataNode = e;
 }
}

Once we have found the correct node we can then get the text from within it (our
encoded/compressed data) and use the base64 decoder to decode it:

for(TiXmlNode* e = pDataNode->FirstChild(); e != NULL; e =
e->NextSibling())
{
 TiXmlText* text = e->ToText();

Creating and Displaying Tile Maps

[174]

 std::string t = text->Value();
 decodedIDs = base64_decode(t);
}

Our decodedIDs variable is now a base64 decoded string. The next step is to use
the zlib library to decompress our data, this is done using the uncompress function:

// uncompress zlib compression
uLongf sizeofids = m_width * m_height * sizeof(int);

std::vector<int> ids(m_width * m_height);

uncompress((Bytef*)&ids[0],
 &sizeofids,(const Bytef*)decodedIDs.c_str(), decodedIDs.size());

The uncompress function takes an array of Bytef* (defined in zlib's zconf.h) as
the destination buffer; we are using an std::vector of int values and casting it
to a Bytef* array. The second parameter is the total size of the destination buffer,
in our case we are using a vector of int values making the total size the number
of rows x the number of columns x the size of an int; or m_width * m_height
* sizeof(int). We then pass in our decoded string and its size as the final two
parameters. Our ids vector now contains all of our tile IDs and the function moves
on to set the size of our data vector for us to fill with our tile IDs:

std::vector<int> layerRow(m_width);
for(int j = 0; j < m_height; j++)
{
 data.push_back(layerRow);
}

We can now fill our data array with the correct values:

for(int rows = 0; rows < m_height; rows++)
{
 for(int cols = 0; cols < m_width; cols++)
 {
 data[rows][cols] = ids[rows * m_width + cols];
 }
}

And finally we set this layer's tile data and then push the layer into the layers array
of our Level.

We must now define the functions in our Level.cpp file.

Chapter 7

[175]

Drawing the map
We are finally at a stage where we can start drawing our tiles to the screen. Inside the
earlier created TileLayer.cpp file we will now need to define our functions for the
layer. Starting with the constructor:

TileLayer::TileLayer(int tileSize, const
 std::vector<Tileset> &tilesets) : m_tileSize(tileSize),
 m_tilesets(tilesets), m_position(0,0), m_velocity(0,0)
{
 m_numColumns = (TheGame::Instance()->getGameWidth() /
 m_tileSize);
 m_numRows = (TheGame::Instance()->getGameHeight() / m_tileSize);
}

The new Game::getGameWidth and Game::getGameHeight functions are just simple
getter functions that return variables set in the Game::init function:

int getGameWidth() const
{
 return m_gameWidth;
}
int getGameHeight() const
{
 return m_gameHeight;
}

The TileLayer update function uses velocity to set the map's position; we will
cover this in more detail when we come to scroll our map:

void TileLayer::update()
{
 m_position += m_velocity;
}

The render function is where all the magic happens:

void TileLayer::render()
{
 int x, y, x2, y2 = 0;

 x = m_position.getX() / m_tileSize;
 y = m_position.getY() / m_tileSize;

 x2 = int(m_position.getX()) % m_tileSize;
 y2 = int(m_position.getY()) % m_tileSize;

Creating and Displaying Tile Maps

[176]

 for(int i = 0; i < m_numRows; i++)
 {
 for(int j = 0; j < m_numColumns; j++)
 {
 int id = m_tileIDs[i][j + x];

 if(id == 0)
 {
 continue;
 }

 Tileset tileset = getTilesetByID(id);

 id--;

 TheTextureManager::Instance()->drawTile(tileset.name, 2, 2,
 (j * m_tileSize) - x2, (i * m_tileSize) - y2, m_tileSize,
 m_tileSize, (id - (tileset.firstGridID - 1)) /
 tileset.numColumns, (id - (tileset.firstGridID - 1)) %
 tileset.numColumns, TheGame::Instance()->getRenderer());
 }
 }
}

You will notice that there is a new function in the TextureManager, drawTile. This
function is specifically for drawing tiles and includes margin and spacing values.
Here it is:

void TextureManager::drawTile(std::string id, int margin, int
 spacing, int x, int y, int width, int height, int currentRow,
 int currentFrame, SDL_Renderer *pRenderer)
{
 SDL_Rect srcRect;
 SDL_Rect destRect;
 srcRect.x = margin + (spacing + width) * currentFrame;
 srcRect.y = margin + (spacing + height) * currentRow;
 srcRect.w = destRect.w = width;
 srcRect.h = destRect.h = height;
 destRect.x = x;
 destRect.y = y;

 SDL_RenderCopyEx(pRenderer, m_textureMap[id], &srcRect,
 &destRect, 0, 0, SDL_FLIP_NONE);
}

Chapter 7

[177]

Let's look closer at the render function; we will ignore the positioning code for now:

for(int i = 0; i < m_numRows; i++)
{
 for(int j = 0; j < m_numColumns; j++)
 {
 int id = m_tileIDs[i][j + x];

 if(id == 0)
 {
 continue;
 }

 Tilesettileset = getTilesetByID(id);

 id--;

 TheTextureManager::Instance()->drawTile(tileset.name,
 tileset.margin, tileset.spacing, (j * m_tileSize) - x2, (i *
 m_tileSize) - y2, m_tileSize, m_tileSize, (id -
 (tileset.firstGridID - 1)) / tileset.numColumns, (id -
 (tileset.firstGridID - 1)) % tileset.numColumns,
 TheGame::Instance()->getRenderer());
 }
}

We loop through the number of columns and the number of rows:

for(int i = 0; i < m_numRows; i++)
{
 for(int j = 0; j < m_numColumns; j++)
{

This is not the number of rows and columns in the full tile ID array, it is actually
the number of columns and rows needed to fill the size of our game. We do not
want to be drawing anything that we do not have to. We obtained these values
earlier in the constructor:

m_numColumns = (TheGame::Instance()->getGameWidth() / m_tileSize);
m_numRows = (TheGame::Instance()->getGameHeight() / m_tileSize);

Next we get the current tile ID from the array (ignore the + x for now):

int id = m_tileIDs[i + y][j + x];

Creating and Displaying Tile Maps

[178]

We check if the tile ID is 0. If it is, then we do not want to draw anything:

if(id == 0)
{
 continue;
}

Otherwise we grab the correct tileset:

Tileset tileset = getTilesetByID(id);

Getting the tileset uses a very simple function, getTilesetByID, which compares
each tileset's firstgid value and returns the correct tileset:

Tileset TileLayer::getTilesetByID(int tileID)
{
 for(int i = 0; i < m_tilesets.size(); i++)
 {
 if(i + 1 <= m_tilesets.size() - 1)
 {
 if(tileID >= m_tilesets[i].firstGridID&&tileID < m_tilesets[i +
 1].firstGridID)
 {
 return m_tilesets[i];
 }
 }
 else
 {
 return m_tilesets[i];
 }
 }

 std::cout << "did not find tileset, returning empty tileset\n";
 Tileset t;
 return t;
}

Next we move on to drawing the tiles:

id--;

TheTextureManager::Instance()->drawTile(tileset.name,
 tileset.margin, tileset.spacing, (j * m_tileSize) - x2, (i *
 m_tileSize) - y2, m_tileSize, m_tileSize, (id -
 (tileset.firstGridID - 1)) / tileset.numColumns, (id -

Chapter 7

[179]

 (tileset.firstGridID - 1)) % tileset.numColumns,
 TheGame::Instance()->getRenderer());
 }
}

First we decrement the ID so that we can draw the correct tile from the tilesheet,
even if it is at position 0,0. We then use the drawTile function to copy across the
correct tile using the tileset we grabbed earlier, to set the first parameter of the
function, which is the name of the texture. Again, we can use the tileset for the next
two parameters, margin and spacing:

tileset.margin, tileset.spacing

The next two parameters set the position we want to draw our tiles at:

(j * m_tileSize) - x2, (i * m_tileSize) - y2

Ignoring the x2 and y2 values for now (they are 0 anyway), we can set the current x
position as the current column multiplied by the width of a tile and the y value as the
current row multiplied by the height of a tile. We then set the width and height of the
tile we are copying across:

m_tileSize, m_tileSize,

And finally we work out the location of the tile on the tilesheet:

(id - (tileset.firstGridID - 1)) / tileset.numColumns,
(id - (tileset.firstGridID - 1)) % tileset.numColumns,

We subtract the firstGridID - 1 to allow us to treat each tilesheet the same and
obtain the correct location. For example, the firstGridID of a tileset could be 50 and
the current tile ID could be 70. We know that this is actually going to be tile 19 (after
we decrement the ID) on the tilesheet itself.

Finally, we must create a level in our PlayState class:

bool PlayState::onEnter()
{
 LevelParser levelParser;
 pLevel = levelParser.parseLevel("assets/map1.tmx");

 std::cout << "entering PlayState\n";
 return true;
}

Creating and Displaying Tile Maps

[180]

Next, draw it in the render function, and also do the same with the update function:

void PlayState::render()
{
 pLevel->render();
}

We will also have to comment out any functions that use objects (such as
collisionChecks) as we don't have any yet and this will cause a runtime error. Run
our game and you will see our tile map being drawn to the screen.

Scrolling a tile map
What we have created so far is fine for a game that takes place in one area that is the
size of our window, but what about if we want to have large maps that are open to
exploration. This is where scrolling comes into play. We have actually implemented
this already but have not yet gone through it step-by-step or seen it in action. Let's do
this now.

First of all, we must resize our map in the Tiled application. Navigating to Map |
Resize Map… will allow us to do this. Leave the height of our map at 15 and change
the width to 60. Fill up the remaining squares with whatever tiles you like. The map
would then look like the following screenshot:

Save the map and we can look at the code:

int x, y, x2, y2 = 0;

x = m_position.getX() / m_tileSize;
y = m_position.getY() / m_tileSize;

x2 = int(m_position.getX()) % m_tileSize;
y2 = int(m_position.getY()) % m_tileSize;

Chapter 7

[181]

When scrolling the map we don't actually move it more than a tile width; we use the
position value to work out where we should begin drawing our map from within the
tile ID array. To get the x value we can use the position we have moved to divided
by the tile width. For example, let's say that we have moved the map to x position
= 100 and the tile width is 32; this would give us a value of 3.125, but since we are
using int values, this will simply be 3. We now know that we are to start drawing
from the third tile across on the map. The y position works in the same way.

To ensure that our tile drawing does not jump between tiles, but smoothly scrolls, we
use a modulo calculation to get the remaining tile amount that we need to move by
and use that to position our map:

x2 = int(m_position.getX()) % m_tileSize;
y2 = int(m_position.getY()) % m_tileSize;

We then subtract these values in the draw function:

(j * m_tileSize) - x2, (i * m_tileSize) - y2

We can test this by setting a velocity in our layers update function:

void TileLayer::update()
{
 m_position += m_velocity;
 m_velocity.setX(1);
}

And then in PlayState we can call this function:

void PlayState::update()
{
 pLevel->update();
}

Run the game and you will see the map scrolling. At the moment we have not put
any kind of handling in for looping the map or stopping at the end. We will cover
this when we begin to create a game in later chapters.

Creating and Displaying Tile Maps

[182]

Parsing object layers
The final topic we will cover in this chapter is loading objects from our Tiled map
file. This is extremely useful and takes the guesswork out of placing objects within
a level. Open up the Tiled application and we can create our first Object Layer by
clicking Layer | Add Object Layer. This will create a new layer called Object Layer
1 as shown in the following screenshot:

We can create objects and assign any values and properties we want on these layers.
First we will create a rectangle. Press R and click anywhere on your tile map, you
will see a small square appear, as shown in the following screenshot:

Right-click on this square and click on Object Properties…. This will bring up the
object properties dialog as shown in the following screenshot:

Chapter 7

[183]

Here, we can set the values we want our object to have, just like our previous state
XML files. Go ahead and fill in the dialog box as shown in the preceding screenshot.
The positions and sizes of this dialog box deal in tiles, not pixels, so x = 1 is actually
x = tile width and so on. Saving this map will add our new object layer to the
map file:

<objectgroup name="Object Layer 1" width="60" height="15">
 <object name="Helicopter1" type="Player" x="32" y="32" width="32
 height="32">
 <properties>
 <property name="numFrames" value="4"/>
 <property name="textureHeight" value="55"/>
 <property name="textureID" value="helicopter"/>
 <property name="textureWidth" value="128"/>
 </properties>
 </object>
</objectgroup>

We are also going to use another property list to load in our textures for this map.
Map | Map Properties will bring up the map properties dialog as shown in the
following screenshot:

Here we can add the textures we need for this map's objects. The saved file will now
have an additional property list for us to parse through:

<properties>
 <property name="helicopter" value="helicopter.png"/>
</properties>

Creating and Displaying Tile Maps

[184]

Developing the ObjectLayer class
Back in our project we will now create a new layer type called ObjectLayer. Create
ObjectLayer.h and we can add the following code:

class ObjectLayer : public Layer
{
 public:
 virtual void update();
 virtual void render();

 std::vector<GameObject*>* getGameObjects()
 {
 return &m_gameObjects;
 }

 private:

 std::vector<GameObject*> m_gameObjects;
};

We will also define these functions in ObjectLayer.cpp:

void ObjectLayer::update()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->update();
 }

}
void ObjectLayer::render()
{
 for(int i = 0; i < m_gameObjects.size(); i++)
 {
 m_gameObjects[i]->draw();
 }
}

Our ObjectLayer class is very simple. It only needs to draw and update the objects
for that layer. Now let's parse our ObjectLayer. We will need two new functions in
the LevelParser class:

void parseTextures(TiXmlElement* pTextureRoot);

void parseObjectLayer(TiXmlElement* pObjectElement,
 std::vector<Layer*> *pLayers);

Chapter 7

[185]

The parseLevel function must now include these functions and pass in the correct
XML node:

// we must parse the textures needed for this level, which have been
added to properties
for(TiXmlElement* e = pProperties->FirstChildElement(); e != NULL;
 e = e->NextSiblingElement())
{
 if(e->Value() == std::string("property"))
 {
 parseTextures(e);
 }
}

We will alter the way we were searching for tile layers to also search for object layers:

// parse any object layers
for(TiXmlElement* e = pRoot->FirstChildElement(); e != NULL; e =
 e->NextSiblingElement())
{
 if(e->Value() == std::string("objectgroup") || e->Value() ==
 std::string("layer"))
 {
 if(e->FirstChildElement()->Value() == std::string("object"))
 {
 parseObjectLayer(e, pLevel->getLayers());
 }
 else if(e->FirstChildElement()->Value() ==
 std::string("data"))
 {
 parseTileLayer(e, pLevel->getLayers(), pLevel->getTilesets());
 }
 }
}

Now we need to define the new functions; parseTextures is a very small and
simple function:

void LevelParser::parseTextures(TiXmlElement* pTextureRoot)
{
 TheTextureManager::Instance()->load(pTextureRoot-
>Attribute("value"), pTextureRoot->Attribute("name"),
 TheGame::Instance()->getRenderer());
}

Creating and Displaying Tile Maps

[186]

It gets the texture values and adds them to the TextureManager. The parseObjects
function is a little longer but not particularly complicated:

void LevelParser::parseObjectLayer(TiXmlElement* pObjectElement,
 std::vector<Layer*> *pLayers)
{
 // create an object layer
 ObjectLayer* pObjectLayer = new ObjectLayer();

 std::cout << pObjectElement->FirstChildElement()->Value();

 for(TiXmlElement* e = pObjectElement->FirstChildElement(); e !=
 NULL; e = e->NextSiblingElement())
 {
 std::cout << e->Value();
 if(e->Value() == std::string("object"))
 {
 int x, y, width, height, numFrames, callbackID, animSpeed;
 std::string textureID;

 // get the initial node values type, x and y
 e->Attribute("x", &x);
 e->Attribute("y", &y);
 GameObject* pGameObject =
 TheGameObjectFactory::Instance()->create(e-
>Attribute("type"));

 // get the property values
 for(TiXmlElement* properties = e->FirstChildElement();
 properties != NULL; properties = properties-
>NextSiblingElement())
 {
 if(properties->Value() == std::string("properties"))
 {
 for(TiXmlElement* property = properties-
>FirstChildElement(); property != NULL; property = property-
>NextSiblingElement())
 {
 if(property->Value() == std::string("property"))
 {
 if(property->Attribute("name") ==
 std::string("numFrames"))
 {
 property->Attribute("value", &numFrames);

Chapter 7

[187]

 }
 else if(property->Attribute("name") ==
 std::string("textureHeight"))
 {
 property->Attribute("value", &height);
 }
 else if(property->Attribute("name") ==
 std::string("textureID"))
 {
 textureID = property->Attribute("value");
 }
 else if(property->Attribute("name") ==
 std::string("textureWidth"))
 {
 property->Attribute("value", &width);
 }
 else if(property->Attribute("name") ==
 std::string("callbackID"))
 {
 property->Attribute("value", &callbackID);
 }
 else if(e->Attribute("name") ==
 std::string("animSpeed"))
 {
 property->Attribute("value", &animSpeed);
 }
 }
 }
 }
 }
 pGameObject->load(new
 LoaderParams(x, y, width, height, textureID,
 numFrames, callbackID, animSpeed));
 pObjectLayer->getGameObjects()->push_back(pGameObject);
 }
 }

 pLayers->push_back(pObjectLayer);
}

Creating and Displaying Tile Maps

[188]

We load the object in a very similar way to the state parser, yet this time we must
check for the name of the property rather than grabbing the attribute directly:

if(property->Attribute("name") == std::string("numFrames"))
{
 property->Attribute("value", &numFrames);
}

We can then create the object just like the state parser:

pGameObject->load(new
 LoaderParams(x,y,width,height,textureID,numFrames,callbackID,
 animSpeed));

And add it to this layer's game object array:

pObjectLayer->getGameObjects()->push_back(pGameObject);

Once we have loaded all of the objects for this layer, we can push it into our Level
layer array:

pLayers->push_back(pObjectLayer);

Run the game and you will see our helicopter in the PlayState again.

Chapter 7

[189]

Summary
We are getting closer to a fully-fledged game all the time. This chapter covered a
quick way to create 2D maps through the use of tiles and also looked at using an
external application to place objects within our levels. The next two chapters will
tie up all of the remaining loose ends and we will create some actual games.

Creating Alien Attack
The framework has come on in leaps and bounds and we are almost ready to make
our first game. We are going to create a simple 2D sidescrolling shooter in the vein
of the classic '80's and '90's shooter games such as R-Type or Pulstar. However, the
game will not be set in space. Aliens have attacked earth and only you and your
weaponized helicopter can stop them. One level of fast-paced action is available in
the source code downloads and this chapter will cover the steps taken to create it.
Here is a screenshot of the game we will be creating:

Creating Alien Attack

[192]

And another slightly more hectic shot:

There are still a few things that the framework must handle before we can create this
game. These additions include:

•	 Sound
•	 Collision detection

By the end of the chapter you will have a good understanding of how this game was
built using the framework and you will have the ability to continue and improve it.
In this chapter, we will cover:

•	 Implementing sound
•	 Creating game-specific object classes
•	 Shooting and detecting bullets
•	 Creating different enemy types
•	 Developing a game

Chapter 8

[193]

Using the SDL_mixer extension for
sound
The SDL_mixer extension has its own Mercurial repository that can be used to
grab the latest source for the extension. It is located at http://hg.libsdl.org/
SDL_mixer. The TortoiseHg application can again be used to clone the extension's
Mercurial repository. Follow these steps to build the library:

1.	 Open up TortoiseHg and press CTRL+SHIFT+N to start cloning a new
repository.

2.	 Type http://hg.libsdl.org/SDL_mixer into the source box.
3.	 The Destination will be C:\SDL2_mixer.
4.	 Hit Clone and wait for completion.
5.	 Navigate to C:\SDL2_mixer\VisualC\ and open SDL_mixer.vcproj in

Visual Studio 2010.
6.	 As long as the x64 folder outlined in Chapter 2, Drawing in SDL was created,

the project will convert with no issues.
7.	 We are going to build the library without MP3 support as we are not going to

need it, and also it does not work particularly well with SDL 2.0.
8.	 Add MP3_MUSIC_DISABLED to the Preprocessor Definitions in the project

properties, which can be found by navigating to C/C++ | Preprocessor, and
build as per the SDL_image instructions in Chapter 2, Drawing in SDL.

Creating the SoundManager class
The game created in this chapter will not need any advanced sound manipulation,
meaning the SoundManager class is quite basic. The class has only been tested using
the .ogg files for music and the .wav files for sound effects. Here is the header file:

enum sound_type
{
 SOUND_MUSIC = 0,
 SOUND_SFX = 1
};

class SoundManager
{
public:

 static SoundManager* Instance()

Creating Alien Attack

[194]

 {
 if(s_pInstance == 0)
 {
 s_pInstance = newSoundManager();
 return s_pInstance;
 }
 return s_pInstance;
 }

 bool load(std::string fileName, std::string id, sound_type type);

 void playSound(std::string id, int loop);
 void playMusic(std::string id, int loop);

 private:

 static SoundManager* s_pInstance;

 std::map<std::string, Mix_Chunk*> m_sfxs;
 std::map<std::string, Mix_Music*> m_music;

 SoundManager();
 ~SoundManager();

 SoundManager(const SoundManager&);
 SoundManager &operator=(const SoundManager&);
};

typedef SoundManager TheSoundManager;

The SoundManager class is a singleton; this makes sense because there should only be
one place that the sounds are stored and it should be accessible from anywhere in the
game. Before sound can be used, Mix_OpenAudio must be called to set up the audio
for the game. Mix_OpenAudio takes the following parameters:

(int frequency, Uint16 format, int channels, int chunksize)

This is done in the SoundManager's constructor with values that will work well for
most games.

SoundManager::SoundManager()
{
 Mix_OpenAudio(22050, AUDIO_S16, 2, 4096);
}

Chapter 8

[195]

The SoundManager class stores sounds in two different std::map containers:

std::map<std::string, Mix_Chunk*> m_sfxs;
std::map<std::string, Mix_Music*> m_music;

These maps store pointers to one of two different types used by SDL_mixer (Mix_
Chunk* and Mix_Music*), keyed using strings. The Mix_Chunk* types are used for
sound effects and the Mix_Music* types are of course used for music. When loading
a music file or a sound effect into SoundManager, we pass in the type of sound we are
loading as an enum called sound_type.

bool load(std::string fileName, std::string id, sound_type type);

This type is then used to decide which std::map to add the loaded sound to and
also which load function to use from SDL_mixer. The load function is defined in
SoundManager.cpp.

bool SoundManager::load(std::string fileName, std::string id, sound_
type type)
{
 if(type == SOUND_MUSIC)
 {
 Mix_Music* pMusic = Mix_LoadMUS(fileName.c_str());

 if(pMusic == 0)
 {
 std::cout << "Could not load music: ERROR - "
 << Mix_GetError() << std::endl;
 return false;
 }

 m_music[id] = pMusic;
 return true;
 }
 else if(type == SOUND_SFX)
 {
 Mix_Chunk* pChunk = Mix_LoadWAV(fileName.c_str());
 if(pChunk == 0)
 {
 std::cout << "Could not load SFX: ERROR - "
 << Mix_GetError() << std::endl;

 return false;
 }

 m_sfxs[id] = pChunk;
 return true;
 }
 return false;
}

Creating Alien Attack

[196]

Once a sound has been loaded it can be played using the playSound or
playMusic functions:

void playSound(std::string id, int loop);
void playMusic(std::string id, int loop);

Both of these functions take the ID of the sound to be played and the amount of
times that it is to be looped. Both functions are very similar.

void SoundManager::playMusic(std::string id, int loop)
{
 Mix_PlayMusic(m_music[id], loop);
}

void SoundManager::playSound(std::string id, int loop)
{
 Mix_PlayChannel(-1, m_sfxs[id], loop);
}

One difference between Mix_PlayMusic and Mix_PlayChannel is that the latter
takes an int as the first parameter; this is the channel that the sound is to be played
on. A value of -1 (as seen in the preceding code) tells SDL_mixer to play the sound
on any available channel.

Finally, when the SoundManager class is destroyed, it will call Mix_CloseAudio:

SoundManager::~SoundManager()
{
 Mix_CloseAudio();
}

And that's it for the SoundManager class.

Setting up the basic game objects
The majority of the work that went into creating Alien Attack was done in the object
classes, while almost everything else was already being handled by manager classes
in the framework. Here are the most important changes:

GameObject revamped
The GameObject base class has a lot more to it than it previously did.

class GameObject
{
public:

Chapter 8

[197]

 // base class needs virtual destructor
 virtual ~GameObject() {}
 // load from file
 virtual void load(std::unique_ptr<LoaderParams> const &pParams)=0;
 // draw the object
 virtual void draw()=0;
 // do update stuff
 virtual void update()=0;
 // remove anything that needs to be deleted
 virtual void clean()=0;
 // object has collided, handle accordingly
 virtual void collision() = 0;
 // get the type of the object
 virtual std::string type() = 0;
 // getters for common variables
 Vector2D& getPosition() { return m_position; }
 int getWidth() { return m_width; }
 int getHeight() { return m_height; }
 // scroll along with tile map
 void scroll(float scrollSpeed) { m_position.setX(m_position.getX() -
 scrollSpeed); }
 // is the object currently being updated?
 bool updating() { return m_bUpdating; }
 // is the object dead?
 bool dead() { return m_bDead; }
 // is the object doing a death animation?
 bool dying() { return m_bDying; }
 // set whether to update the object or not
 void setUpdating(bool updating) { m_bUpdating = updating; }

protected:

 // constructor with default initialisation list
 GameObject() : m_position(0,0),
 m_velocity(0,0),
 m_acceleration(0,0),
 m_width(0),
 m_height(0),
 m_currentRow(0),
 m_currentFrame(0),
 m_bUpdating(false),
 m_bDead(false),
 m_bDying(false),
 m_angle(0),

Creating Alien Attack

[198]

 m_alpha(255)
 {
 }
 // movement variables
 Vector2D m_position;
 Vector2D m_velocity;
 Vector2D m_acceleration;
 // size variables
 int m_width;
 int m_height;
 // animation variables
 int m_currentRow;
 int m_currentFrame;
 int m_numFrames;
 std::string m_textureID;
 // common boolean variables
 bool m_bUpdating;
 bool m_bDead;
 bool m_bDying;
 // rotation
 double m_angle;
 // blending
 int m_alpha;
};

This class now has a lot of the member variables that used to be in SDLGameObject.
New variables for checking whether an object is updating, doing the death
animation, or is dead, have been added. Updating is set to true when an object is
within the game screen after scrolling with the game level.

In place of a regular pointer to LoaderParams in the load function, an std::unique_
ptr pointer is now used; this is part of the new C++11 standard and ensures that the
pointer is deleted after going out of scope.

virtual void load(std::unique_ptr<LoaderParams> const &pParams)=0;

There are two new functions that each derived object must now implement (whether
it's owned or inherited):

 // object has collided, handle accordingly
virtual void collision() = 0;

 // get the type of the object
virtual std::string type() = 0;

Chapter 8

[199]

SDLGameObject is now ShooterObject
The SDLGameObject class has now been renamed to ShooterObject and is a lot
more specific to this type of game:

class ShooterObject : public GameObject
{
public:

 virtual ~ShooterObject() {}// for polymorphism
 virtual void load(std::unique_ptr<LoaderParams> const
 &pParams);
 virtual void draw();
 virtual void update();
 virtual void clean() {}// not implemented in this class
 virtual void collision() {}//not implemented in this class
 virtual std::string type() { return "SDLGameObject"; }

protected:

 // we won't directly create ShooterObject's
 ShooterObject();

 // draw the animation for the object being destroyed
 void doDyingAnimation();

 // how fast will this object fire bullets? with a counter
 int m_bulletFiringSpeed;
 int m_bulletCounter;

 // how fast will this object move?
 int m_moveSpeed;

 // how long will the death animation takes? with a counter
 int m_dyingTime;
 int m_dyingCounter;

 // has the explosion sound played?
 bool m_bPlayedDeathSound;
};

Creating Alien Attack

[200]

This class has default implementations for draw and update that can be used in
derived classes; they are essentially the same as the previous SDLGameObject
class, so we will not cover them here. A new function that has been added is
doDyingAnimation. This function is responsible for updating the animation when
enemies explode and then setting them to dead so that they can be removed from
the game.

void ShooterObject::doDyingAnimation()
{
 // keep scrolling with the map
 scroll(TheGame::Instance()->getScrollSpeed());

 m_currentFrame = int(((SDL_GetTicks() / (1000 / 3)) %
 m_numFrames));

 if(m_dyingCounter == m_dyingTime)
 {
 m_bDead = true;
 }
 m_dyingCounter++; //simple counter, fine with fixed frame rate
}

Player inherits from ShooterObject
The Player object now inherits from the new ShooterObject class and
implements its own update function. Some new game-specific functions and
variables have been added:

private:

 // bring the player back if there are lives left
 void ressurect();

 // handle any input from the keyboard, mouse, or joystick
 void handleInput();

 // handle any animation for the player
 void handleAnimation();

 // player can be invulnerable for a time
 int m_invulnerable;
 int m_invulnerableTime;
 int m_invulnerableCounter;
};

Chapter 8

[201]

The ressurect function resets the player back to the center of the screen and
temporarily makes the Player object invulnerable; this is visualized using alpha of
the texture. This function is also responsible for resetting the size value of the texture
which is changed in doDyingAnimation to accommodate for the explosion texture:

void Player::ressurect()
{
 TheGame::Instance()->setPlayerLives(TheGame::Instance()
 ->getPlayerLives() - 1);

 m_position.setX(10);
 m_position.setY(200);
 m_bDying = false;

 m_textureID = "player";

 m_currentFrame = 0;
 m_numFrames = 5;
 m_width = 101;
 m_height = 46;

 m_dyingCounter = 0;
 m_invulnerable = true;
}

Animation is a big part of the feel of the Player object; from flashing (when
invulnerable), to rotating (when moving in a forward or backward direction). This
has led to there being a separate function dedicated to handling animation:

void Player::handleAnimation()
{
 // if the player is invulnerable we can flash its alpha to let
 people know
 if(m_invulnerable)
 {
 // invulnerability is finished, set values back
 if(m_invulnerableCounter == m_invulnerableTime)
 {
 m_invulnerable = false;
 m_invulnerableCounter = 0;
 m_alpha = 255;
 }
 else// otherwise, flash the alpha on and off
 {
 if(m_alpha == 255)
 {

Creating Alien Attack

[202]

 m_alpha = 0;
 }
 else
 {
 m_alpha = 255;
 }
 }

 // increment our counter
 m_invulnerableCounter++;
 }

 // if the player is not dead then we can change the angle with
 the velocity to give the impression of a moving helicopter
 if(!m_bDead)
 {
 if(m_velocity.getX() < 0)
 {
 m_angle = -10.0;
 }
 else if(m_velocity.getX() > 0)
 {
 m_angle = 10.0;
 }
 else
 {
 m_angle = 0.0;
 }
 }

 // our standard animation code - for helicopter propellors
 m_currentFrame = int(((SDL_GetTicks() / (100)) % m_numFrames));
}

The angle and alpha of an object are changed using new parameters to the
drawFrame function of TextureManager:

void TextureManager::drawFrame(std::string id, int x, int y, int
width, int height, int currentRow, int currentFrame, SDL_Renderer
*pRenderer, double angle, int alpha, SDL_RendererFlip flip)
{
 SDL_Rect srcRect;
 SDL_Rect destRect;
 srcRect.x = width * currentFrame;
 srcRect.y = height * currentRow;

Chapter 8

[203]

 srcRect.w = destRect.w = width;
 srcRect.h = destRect.h = height;
 destRect.x = x;
 destRect.y = y;

 // set the alpha of the texture and pass in the angle
 SDL_SetTextureAlphaMod(m_textureMap[id], alpha);
 SDL_RenderCopyEx(pRenderer, m_textureMap[id], &srcRect,
 &destRect, angle, 0, flip);
}

Finally the Player::update function ties this all together while also having extra
logic to handle when a level is complete:

void Player::update()
{
 // if the level is complete then fly off the screen
 if(TheGame::Instance()->getLevelComplete())
 {
 if(m_position.getX() >= TheGame::Instance()->getGameWidth())
 {
 TheGame::Instance()->setCurrentLevel(TheGame::Instance()
 ->getCurrentLevel() + 1);
 }
 else
 {
 m_velocity.setY(0);
 m_velocity.setX(3);
 ShooterObject::update();
 handleAnimation();
 }
 }
 else
 {
 // if the player is not doing its death animation then update
 it normally
 if(!m_bDying)
 {
 // reset velocity
 m_velocity.setX(0);
 m_velocity.setY(0);

 // get input
 handleInput();
 // do normal position += velocity update

Creating Alien Attack

[204]

 ShooterObject::update();

 // update the animation
 handleAnimation();
 }
 else // if the player is doing the death animation
 {
 m_currentFrame = int(((SDL_GetTicks() / (100)) %
 m_numFrames));

 // if the death animation has completed
 if(m_dyingCounter == m_dyingTime)
 {
 // ressurect the player
 ressurect();
 }

 m_dyingCounter++;
 }
 }
}

Once a level is complete and the player has flown offscreen, the Player::update
function also tells the game to increment the current level:

TheGame::Instance()->setCurrentLevel(TheGame::Instance()-
>getCurrentLevel() + 1);

The Game::setCurrentLevel function changes the state to BetweenLevelState:

void Game::setCurrentLevel(int currentLevel)
{
 m_currentLevel = currentLevel;
 m_pGameStateMachine->changeState(new BetweenLevelState());
 m_bLevelComplete = false;
}

Lots of enemy types
A game such as Alien Attack needs a lot of enemy types to keep things interesting;
each with its own behavior. Enemies should be easy to create and automatically
added to the collision detection list. With this in mind, the Enemy class has now
become a base class:

// Enemy base class
class Enemy : public ShooterObject
{

Chapter 8

[205]

public:
 virtual std::string type() { return"Enemy"; }

protected:
 int m_health;

 Enemy() : ShooterObject() {}
 virtual ~Enemy() {} // for polymorphism

};

All enemy types will derive from this class, but it is important that they do not
override the type method. The reason for this will become clear once we move
onto our games collision detection classes. Go ahead and take a look at the enemy
types in the Alien Attack source code to see how simple they are to create.

Glider ShotGlider Eskeletor Turret / Roof Turret

Adding a scrolling background
Scrolling backgrounds are important to 2D games like this; they help give an illusion
of depth and movement. This ScrollingBackground class uses two destination
rectangles and two source rectangles; one expands while the other contracts. Once
the expanding rectangle has reached its full width, both rectangles are reset and the
loop continues:

void ScrollingBackground::load(std::unique_ptr<LoaderParams> const
&pParams)
{
 ShooterObject::load(std::move(pParams));
 m_scrollSpeed = pParams->getAnimSpeed();

 m_scrollSpeed = 1;

 m_srcRect1.x = 0;
 m_destRect1.x = m_position.getX();
 m_srcRect1.y = 0;
 m_destRect1.y = m_position.getY();

 m_srcRect1.w = m_destRect1.w = m_srcRect2Width =
 m_destRect1Width = m_width;

Creating Alien Attack

[206]

 m_srcRect1.h = m_destRect1.h = m_height;

 m_srcRect2.x = 0;
 m_destRect2.x = m_position.getX() + m_width;
 m_srcRect2.y = 0;
 m_destRect2.y = m_position.getY();

 m_srcRect2.w = m_destRect2.w = m_srcRect2Width =
 m_destRect2Width = 0;
 m_srcRect2.h = m_destRect2.h = m_height;
}

void ScrollingBackground::draw()
{
 // draw first rect
 SDL_RenderCopyEx(TheGame::Instance()->getRenderer(),
 TheTextureManager::Instance()->getTextureMap()[m_textureID],
 &m_srcRect1, &m_destRect1, 0, 0, SDL_FLIP_NONE);

 // draw second rect
 SDL_RenderCopyEx(TheGame::Instance()->getRenderer(),
 TheTextureManager::Instance()->getTextureMap()[m_textureID],
 &m_srcRect2, &m_destRect2, 0, 0, SDL_FLIP_NONE);

}

void ScrollingBackground::update()
{
 if(count == maxcount)
 {
 // make first rectangle smaller
 m_srcRect1.x += m_scrollSpeed;
 m_srcRect1.w -= m_scrollSpeed;
 m_destRect1.w -= m_scrollSpeed;

 // make second rectangle bigger
 m_srcRect2.w += m_scrollSpeed;
 m_destRect2.w += m_scrollSpeed;
 m_destRect2.x -= m_scrollSpeed;

 // reset and start again
 if(m_destRect2.w >= m_width)
 {
 m_srcRect1.x = 0;

Chapter 8

[207]

 m_destRect1.x = m_position.getX();
 m_srcRect1.y = 0;
 m_destRect1.y = m_position.getY();

 m_srcRect1.w = m_destRect1.w = m_srcRect2Width =
 m_destRect1Width = m_width;
 m_srcRect1.h = m_destRect1.h = m_height;

 m_srcRect2.x = 0;
 m_destRect2.x = m_position.getX() + m_width;
 m_srcRect2.y = 0;
 m_destRect2.y = m_position.getY();

 m_srcRect2.w = m_destRect2.w = m_srcRect2Width =
 m_destRect2Width = 0;
 m_srcRect2.h = m_destRect2.h = m_height;
 }
 count = 0;
 }

 count++;
}

Handling bullets
Most objects in the game fire bullets and they all pretty much need to be checked
for collisions against bullets as well; the bottom line—bullets are important in Alien
Attack. The game has a dedicated BulletHandler class that handles the creation,
destruction, updating, and rendering of bullets.

Two types of bullets
There are two types of bullets in the game, PlayerBullet and EnemyBullet, both
of which are handled in the same BulletManager class. Both of the bullet classes are
declared and defined in Bullet.h:

class PlayerBullet : public ShooterObject
{
public:

 PlayerBullet() : ShooterObject()
 {

Creating Alien Attack

[208]

 }

 virtual ~PlayerBullet() {}

 virtual std::string type() { return "PlayerBullet"; }

 virtual void load(std::unique_ptr<LoaderParams> pParams, Vector2D
 heading)
 {
 ShooterObject::load(std::move(pParams));
 m_heading = heading;
 }

 virtual void draw()
 {
 ShooterObject::draw();
 }

 virtual void collision()
 {
 m_bDead = true;
 }

 virtual void update()
 {
 m_velocity.setX(m_heading.getX());
 m_velocity.setY(m_heading.getY());

 ShooterObject::update();
 }

 virtual void clean()
 {
 ShooterObject::clean();
 }

private:

 Vector2D m_heading;
};

// Enemy Bullet is just a Player Bullet with a different typename
class EnemyBullet : public PlayerBullet

Chapter 8

[209]

{
public:

 EnemyBullet() : PlayerBullet()
 {
 }

 virtual ~EnemyBullet() {}

 virtual std::string type() { return "EnemyBullet"; }
};

Bullets are very simple, they just move in one direction and at a certain speed.

The BulletHandler class
The BulletHandler class uses two public functions to add bullets:

void addPlayerBullet(int x, int y, int width, int height,
std::string textureID, int numFrames, Vector2D heading);
void addEnemyBullet(int x, int y, int width, int height,
std::string textureID, int numFrames, Vector2D heading);

The BulletHandler class is also a singleton. So, if an object wants to add a bullet to
the game, it can do so using one of the above functions. Here is an example from the
ShotGlider class:

TheBulletHandler::Instance()->addEnemyBullet(m_position.getX(),
m_position.getY() + 15, 16, 16, "bullet2", 1, Vector2D(-10, 0));

This will add a bullet at the current location of ShotGlider, with a heading vector
of V(-10,0).

Both add functions are very similar; they create a new instance of PlayerBullet or
EnemyBullet and then push it into the correct vector. Here are their definitions:

void BulletHandler::addPlayerBullet(int x, int y, int width, int
 height, std::string textureID, int numFrames, Vector2D heading)
{
 PlayerBullet* pPlayerBullet = newPlayerBullet();
 pPlayerBullet->load(std::unique_ptr<LoaderParams>(new
 LoaderParams(x, y, width, height, textureID, numFrames)),
 heading);

Creating Alien Attack

[210]

 m_playerBullets.push_back(pPlayerBullet);
}

void BulletHandler::addEnemyBullet(int x, int y, int width, int
height, std::string textureID, int numFrames, Vector2D heading)
{
 EnemyBullet* pEnemyBullet = new EnemyBullet();
 pEnemyBullet->load(std::unique_ptr<LoaderParams>(new
 LoaderParams(x, y, width, height, textureID, numFrames)),
 heading);

 m_enemyBullets.push_back(pEnemyBullet);
}

A big advantage of having a separate place to store bullets like this, rather than have
objects themselves manage their own bullets, is that there is no need to pass objects
around just to get their bullets to check collisions against. This BulletHandler class
gives us a centralized location that we can then easily pass to the collision handler.

The update and draw functions are essentially just loops that call each bullet's
respective functions, however the update function will also destroy any bullets that
have gone off the screen:

for (std::vector<PlayerBullet*>::iterator p_it =
m_playerBullets.begin(); p_it != m_playerBullets.end();)
{
 if((*p_it)->getPosition().getX() < 0 || (*p_it)
 ->getPosition().getX() >TheGame::Instance()->getGameWidth()
 || (*p_it)->getPosition().getY() < 0 || (*p_it)->
 getPosition().getY() >TheGame::Instance()->getGameHeight() ||
 (*p_it)->dead())// if off screen or dead
 {
 delete * p_it; // delete the bullet
 p_it = m_playerBullets.erase(p_it); //remove
 }
 else// continue to update and loop
 {
 (*p_it)->update();
 ++p_it;
 }
}

Chapter 8

[211]

Dealing with collisions
With so many bullets flying around and having the Enemy objects to check collisions
against, it is important that there be a separate class that does this collision checking
for us. This way we know where to look if we decide we want to implement a new
way of checking for collisions or optimize the current code. The Collision.h file
contains a static method that checks for collisions between two SDL_Rect objects:

const static int s_buffer = 4;

static bool RectRect(SDL_Rect* A, SDL_Rect* B)
{
 int aHBuf = A->h / s_buffer;
 int aWBuf = A->w / s_buffer;

 int bHBuf = B->h / s_buffer;
 int bWBuf = B->w / s_buffer;

 // if the bottom of A is less than the top of B - no collision
 if((A->y + A->h) - aHBuf <= B->y + bHBuf) { return false; }

 // if the top of A is more than the bottom of B = no collision
 if(A->y + aHBuf >= (B->y + B->h) - bHBuf) { return false; }

 // if the right of A is less than the left of B - no collision
 if((A->x + A->w) - aWBuf <= B->x + bWBuf) { return false; }

 // if the left of A is more than the right of B - no collision
 if(A->x + aWBuf >= (B->x + B->w) - bWBuf) { return false; }

 // otherwise there has been a collision
 return true;
}

The function makes use of a buffer, which is a value that is used to make the
rectangles slightly smaller. In a game such as Alien Attack, exact collision on
bounding rectangles would be slightly unfair and also not much fun. With the
buffer value, more direct hits are needed before they will be registered as a collision.
Here the buffer is set to 4; this will take a fourth off of each side of the rectangle.

The Player class will not handle its own collisions. This requires a way to separate
out the player from the rest of the GameObject instants when the level is loaded.
The Level class now stores a pointer to Player:

Player* m_pPlayer;

Creating Alien Attack

[212]

With a public getter and setter:

Player* getPlayer() { return m_pPlayer; }
void setPlayer(Player* pPlayer) { m_pPlayer = pPlayer; }

The LevelParser instance sets this pointer when it loads in Player from the
level file:

pGameObject->load(std::unique_ptr<LoaderParams>(new LoaderParams(x,
y, width, height, textureID, numFrames,callbackID, animSpeed)));

if(type == "Player") // check if it's the player
{
 pLevel->setPlayer(dynamic_cast<Player*>(pGameObject));
}

pObjectLayer->getGameObjects()->push_back(pGameObject);

Another addition to Level is that it holds a separate std::vector of TileLayer*
which are tile layers that the game will check against for collisions. This value
is passed in from the .tmx file and any TileLayer that needs to be checked for
collisions must set collidable as a property in the tiled application.

This also requires a slight alteration in LevelParser::parseLevel when checking
for object layers, just in case the layer does contain properties (in which case data
would no longer be the first child element):

else if(e->FirstChildElement()->Value() == std::string("data") ||
(e->FirstChildElement()->NextSiblingElement() != 0 && e-
>FirstChildElement()->NextSiblingElement()->Value() ==
std::string("data")))
{
 parseTileLayer(e, pLevel->getLayers(), pLevel->getTilesets(),
 pLevel->getCollisionLayers());
}

Chapter 8

[213]

The LevelParser instance can now add collision layers to the collision layers array
in parseTileLayer:

// local temporary variable
bool collidable = false;

// other code…

for(TiXmlElement* e = pTileElement->FirstChildElement(); e !=
NULL; e = e->NextSiblingElement())
{
 if(e->Value() == std::string("properties"))
 {
 for(TiXmlElement* property = e->FirstChildElement(); property
 != NULL; property = property->NextSiblingElement())
 {
 if(property->Value() == std::string("property"))
 {
 if(property->Attribute("name") ==
 std::string("collidable"))
 {
 collidable = true;
 }
 }
 }
 }

 if(e->Value() == std::string("data"))
 {
 pDataNode = e;
 }
}

// other code…

// push into collision array if necessary
if(collidable)
{
 pCollisionLayers->push_back(pTileLayer);
}

pLayers->push_back(pTileLayer);

Creating Alien Attack

[214]

Creating a CollisionManager class
The class responsible for checking and handling all of these collisions is the
CollisionManager class. Here is its declaration:

class CollisionManager
{
public:

 void checkPlayerEnemyBulletCollision(Player* pPlayer);
 void checkPlayerEnemyCollision(Player* pPlayer, const
 std::vector<GameObject*> &objects);
 void checkEnemyPlayerBulletCollision(const
 std::vector<GameObject*> &objects);
 void checkPlayerTileCollision(Player* pPlayer, const
 std::vector<TileLayer*> &collisionLayers);
};

Looking at the source code you will see that these functions are pretty big, yet they
are relatively simple. They loop through each object that requires a collision test,
create a rectangle for each, and then pass it to the static RectRect function defined
in Collision.h. If a collision occurred then it calls the collision function for that
object. The checkEnemyPlayerBulletCollision and checkPlayerEnemyCollision
functions perform an extra check to see if the object is actually of Enemy type:

if(objects[i]->type() != std::string("Enemy") || !objects[i]-
>updating())
{
 continue;
}

If it is not, then it does not check the collision. This is why it is important that the Enemy
subtypes do not override the type function or if they do, their type must also be added
to this check. This condition also checks whether the object is updating or not; if it is
not, then it is offscreen and does not need to be checked against for collision.

Checking for collision against tiles requires a similar method to working out where
to start drawing the tiles from, which was implemented in the TileLayer::render
function. Here is the checkPlayerTileCollision definition:

void CollisionManager::checkPlayerTileCollision(Player* pPlayer,
 const std::vector<TileLayer*> &collisionLayers)
{
 // iterate through collision layers
 for(std::vector<TileLayer*>::const_iterator it =

Chapter 8

[215]

 collisionLayers.begin(); it != collisionLayers.end(); ++it)
 {
 TileLayer* pTileLayer = (*it);
 std::vector<std::vector<int>> tiles = pTileLayer-
 >getTileIDs();

 // get this layers position
 Vector2D layerPos = pTileLayer->getPosition();

 int x, y, tileColumn, tileRow, tileid = 0;

 // calculate position on tile map
 x = layerPos.getX() / pTileLayer->getTileSize();
 y = layerPos.getY() / pTileLayer->getTileSize();

 // if moving forward or upwards
 if(pPlayer->getVelocity().getX() >= 0 || pPlayer-
 >getVelocity().getY() >= 0)
 {
 tileColumn = ((pPlayer->getPosition().getX() + pPlayer-
 >getWidth()) / pTileLayer->getTileSize());
 tileRow = ((pPlayer->getPosition().getY() + pPlayer-
 >getHeight())
 / pTileLayer->getTileSize());
 tileid = tiles[tileRow + y][tileColumn + x];
 }
 else if(pPlayer->getVelocity().getX() < 0 || pPlayer-
 >getVelocity().getY() < 0) // if moving backwards or downwards
 {
 tileColumn = pPlayer->getPosition().getX() / pTileLayer-
 >getTileSize();
 tileRow = pPlayer->getPosition().getY() / pTileLayer-
 >getTileSize();
 tileid = tiles[tileRow + y][tileColumn + x];
 }
 if(tileid != 0) // if the tile id not blank then collide
 {
 pPlayer->collision();
 }
 }
}

Creating Alien Attack

[216]

Possible improvements
Alien Attack is a pretty robust game at the moment; we highly recommend looking
through the source code and becoming familiar with every aspect of it. Once you
have a good understanding of most of the areas of the game, it is a lot easier to see
where certain areas could be enhanced. Here are some ideas that could be added to
improve the game:

•	 Bullets could be created at the start of a level and stored in an object pool; so
rather than creating and deleting bullets all the time they can be pulled from
and put back into the object pool. The main advantage of this approach is
that the creation and destruction of objects can be quite expensive when it
comes to performance. Eliminating this while the game is running could give
a real performance boost.

•	 Collision detection could be optimized further, possibly through the addition
of a Quadtree to stop unnecessary collision checks.

•	 The source code has a few areas that use string comparisons to check types.
This can be a bit of a performance hog, so other options such as using enums
as types may be a better option.

You may have noticed areas yourself that you feel you could improve upon.
Working on these within the context of a game, where you can test the results,
is a great learning experience.

Summary
The framework has been successfully used to create a game—Alien Attack.
Throughout this chapter, the most important parts of the game were covered, along
with a short explanation of why they were designed in such a way. With the source
code for this game available, there is now a great project to start practicing with.

Creating Conan the Caveman
In the previous chapter, the creation of Alien Attack demonstrated that the
framework is now at a point where it can be used to quickly create a 2D side
scrolling shooter. Other genres are also simple to make with most of the changes
once again being contained within the object classes.

In this chapter, we will cover:

•	 Adapting the previous code base for a new game
•	 More precise tile-collision detection
•	 Handling jumping
•	 Possible additions to the framework

This chapter will use the framework to create a platform game, Conan the Caveman.
Here is a screenshot of the finished game level:

Creating Conan the Caveman

[218]

Here's another screenshot with more enemies:

As with the previous chapter, this chapter is not a step-by-step guide to creating
Conan the Caveman, rather it is an overview of the most important aspects of the
game. The project for the game is available in the source code downloads.

Setting up the basic game objects
In some ways this game is more complicated than Alien Attack, whereas in other
ways it is simpler. This section will cover the changes that were made to the Alien
Attack source code: what was altered, what was removed, and what was added.

No more bullets or bullet collisions
Conan the Caveman does not use projectile weapons, and therefore, there is no
longer a Bullet class and the CollisonManager class no longer needs to have a
function that checks for collisions between them; it only checks for the Player and
Enemy collisions:

class CollisionManager
{
public:

 void checkPlayerEnemyCollision(Player* pPlayer, const
 std::vector<GameObject*>&objects);
};

Chapter 9

[219]

Game objects and map collisions
Almost all objects will need to collide with the tile map and react accordingly. The
GameObject class now has a private member that is a pointer to the collision layers;
previously only the Player class had this variable:

std::vector<TileLayer*>* m_pCollisionLayers;

GameObject also now has a function to set this variable:

void setCollisionLayers(std::vector<TileLayer*>* layers) { m_
pCollisionLayers = layers; }

The Player class would previously have this set at the end of the
LevelParser::parseLevel function, as follows:

pLevel->getPlayer()->setCollisionLayers(pLevel->getCollisionLayers());

This is no longer needed, as each GameObject gets their m_pCollisionLayers
variables set on creation in the object-layer parsing:

// load the object
pGameObject->load(std::unique_ptr<LoaderParams>(new LoaderParams(x, y,
width, height, textureID, numFrames,callbackID, animSpeed)));
// set the collision layers
pGameObject->setCollisionLayers(pLevel->getCollisionLayers());

ShooterObject is now PlatformerObject
The shooter-specific code from Alien Attack has been stripped out of ShooterObject
and the class is renamed to PlatformerObject. Anything that all game objects for
this game will make use of is within this class:

class PlatformerObject : public GameObject
{
public:

 virtual ~PlatformerObject() {}

 virtual void load(std::unique_ptr<LoaderParams> const &pParams);

 virtual void draw();
 virtual void update();

 virtual void clean() {}
 virtual void collision() {}

Creating Conan the Caveman

[220]

 virtual std::string type() { return "SDLGameObject"; }

protected:

 PlatformerObject();

 bool checkCollideTile(Vector2D newPos);

 void doDyingAnimation();

 int m_bulletFiringSpeed;
 int m_bulletCounter;
 int m_moveSpeed;

 // how long the death animation takes, along with a counter
 int m_dyingTime;
 int m_dyingCounter;

 // has the explosion sound played?
 bool m_bPlayedDeathSound;

 bool m_bFlipped;

 bool m_bMoveLeft;
 bool m_bMoveRight;
 bool m_bRunning;

 bool m_bFalling;
 bool m_bJumping;
 bool m_bCanJump;

 Vector2D m_lastSafePos;

 int m_jumpHeight;
};

There are some variables and functions from Alien Attack that are still
useful, plus a few new functions. One of the most important additions is
the checkCollideTile function, which takes Vector2D as a parameter
and checks whether it causes a collision:

bool PlatformerObject::checkCollideTile(Vector2D newPos)
{
 if(newPos.m_y + m_height>= TheGame::Instance()->getGameHeight()
 - 32)

Chapter 9

[221]

 {
 return false;
 }
 else
 {
 for(std::vector<TileLayer*>::iterator it = m_pCollisionLayers
 ->begin(); it != m_pCollisionLayers->end(); ++it)
 {
 TileLayer* pTileLayer = (*it);
 std::vector<std::vector<int>> tiles = pTileLayer
 ->getTileIDs();

 Vector2D layerPos = pTileLayer->getPosition();

 int x, y, tileColumn, tileRow, tileid = 0;

 x = layerPos.getX() / pTileLayer->getTileSize();
 y = layerPos.getY() / pTileLayer->getTileSize();

 Vector2D startPos = newPos;
 startPos.m_x += 15;
 startPos.m_y += 20;
 Vector2D endPos(newPos.m_x + (m_width - 15), (newPos.m_y) +
 m_height - 4);

 for(int i = startPos.m_x; i < endPos.m_x; i++)
 {
 for(int j = startPos.m_y; j < endPos.m_y; j++)
 {
 tileColumn = i / pTileLayer->getTileSize();
 tileRow = j / pTileLayer->getTileSize();

 tileid = tiles[tileRow + y][tileColumn + x];

 if(tileid != 0)
 {
 return true;
 }
 }
 }
 }

 return false;
 }
}

Creating Conan the Caveman

[222]

This is quite a large function, but it is essentially the same as how Alien Attack
checked for tile collisions. One difference is the y position check:

if(newPos.m_y + m_height >= TheGame::Instance()->getGameHeight() - 32)
{
 return false;
}

This is used to ensure that we can fall off the map (or fall into a hole) without the
function trying to access tiles that are not there. For example, if the object's position
is outside the map, the following code would try to access tiles that do not exist and
would therefore fail:

tileid = tiles[tileRow + y][tileColumn + x];

The y value check prevents this.

The Camera class
In a game such as Alien Attack, precise map-collision detection is not terribly
important; it is a lot more important to have precise bullet, player, and enemy
collisions. A platform game, however, needs very precise map collision requiring
the need for a slightly different way of moving the map, so that no precision is lost
when scrolling.

In Alien Attack, the map did not actually move; some variables were used to
determine which point of the map to draw and this gave the illusion of the
map scrolling. In Conan the Caveman, the map will move so that any collision
detection routines are relative to the actual position of the map. For this a Camera
class was created:

class Camera
{
public:

 static Camera* Instance()
 {
 if(s_pCamera == 0)
 {
 s_pCamera = new Camera();
 }

 return s_pCamera;
 }

Chapter 9

[223]

 void update(Vector2D velocity);

 void setTarget(Vector2D* target) { m_pTarget = target; }
 void setPosition(const Vector2D& position) { m_position =
 position; }

 const Vector2D getPosition() const;

private:

 Camera();
 ~Camera();

 // the camera's target
 Vector2D* m_pTarget;

 // the camera's position
 Vector2D m_position;

 static Camera* s_pCamera;
};

typedef Camera TheCamera;

This class is very simple, as it merely holds a location and updates it using the
position of a target, referred to the pointer as m_pTarget:

const Vector2DCamera::getPosition() const
{
{
 if(m_pTarget != 0)
 {
 Vector2D pos(m_pTarget->m_x - (TheGame::Instance()
 ->getGameWidth() / 2), 0);

 if(pos.m_x< 0)
 {
 pos.m_x = 0;
 }

 return pos;
 }

 return m_position;
}

Creating Conan the Caveman

[224]

This could also be updated to include the y value as well, but because this is a
horizontal-scrolling game, it is not needed here and so the y is returned as 0.
This camera position is used to move the map and decide which tiles to draw.

Camera-controlled map
The TileLayer class now needs to know the complete size of the map rather than
just one section of it; this is passed in through the constructor:

TileLayer(int tileSize, int mapWidth, int mapHeight, const
std::vector<Tileset>& tilesets);

LevelParser passes the height and width in as it creates each TileLayer:

void LevelParser::parseTileLayer(TiXmlElement* pTileElement,
std::vector<Layer*> *pLayers, const std::vector<Tileset>* pTilesets,
std::vector<TileLayer*> *pCollisionLayers)
{
TileLayer* pTileLayer = new TileLayer(m_tileSize, m_width, m_height,
*pTilesets);

The TileLayer class uses these values to set its row and column variables:

TileLayer::TileLayer(int tileSize, int mapWidth, int mapHeight,
const std::vector<Tileset>& tilesets) : m_tileSize(tileSize), m_
tilesets(tilesets), m_position(0,0), m_velocity(0,0)
{
 m_numColumns = mapWidth;
 m_numRows = mapHeight;

 m_mapWidth = mapWidth;
}

With these changes, the tile map now moves according to the position of the camera
and skips any tiles that are outside the viewable area:

void TileLayer::render()
{
 int x, y, x2, y2 = 0;

 x = m_position.getX() / m_tileSize;
 y = m_position.getY() / m_tileSize;

 x2 = int(m_position.getX()) % m_tileSize;
 y2 = int(m_position.getY()) % m_tileSize;

 for(int i = 0; i < m_numRows; i++)

Chapter 9

[225]

 {
 for(int j = 0; j < m_numColumns; j++)
 {
 int id = m_tileIDs[i + y][j + x];

 if(id == 0)
 {
 continue;
 }

 // if outside the viewable area then skip the tile
 if(((j * m_tileSize) - x2) - TheCamera::Instance()
 ->getPosition().m_x < -m_tileSize || ((j * m_tileSize) - x2)
 - TheCamera::Instance()->getPosition()
 .m_x > TheGame::Instance()->getGameWidth())
 {
 continue;
 }

 Tileset tileset = getTilesetByID(id);

 id--;

 // draw the tile into position while offsetting its x
 position by
 // subtracting the camera position
 TheTextureManager::Instance()->drawTile(tileset.name,
 tileset.margin, tileset.spacing, ((j * m_tileSize) - x2) -
 TheCamera::Instance()->getPosition().m_x, ((i * m_tileSize)
 - y2), m_tileSize, m_tileSize, (id - (tileset.firstGridID -
 1)) / tileset.numColumns, (id - (tileset.firstGridID - 1)) %
 tileset.numColumns, TheGame::Instance()->getRenderer());
 }
 }

The Player class
The Player class now has to contend with jumping as well as moving, all while
checking for map collisions. The Player::update function has undergone quite
a change:

void Player::update()
{
 if(!m_bDying)
 {
 // fell off the edge

Creating Conan the Caveman

[226]

 if(m_position.m_y + m_height >= 470)
 {
 collision();
 }

 // get the player input
 handleInput();

 if(m_bMoveLeft)
 {
 if(m_bRunning)
 {
 m_velocity.m_x = -5;
 }
 else
 {
 m_velocity.m_x = -2;
 }
 }
 else if(m_bMoveRight)
 {
 if(m_bRunning)
 {
 m_velocity.m_x = 5;
 }
 else
 {
 m_velocity.m_x = 2;
 }
 }
 else
 {
 m_velocity.m_x = 0;
 }

 // if we are higher than the jump height set jumping to false
 if(m_position.m_y < m_lastSafePos.m_y - m_jumpHeight)
 {
 m_bJumping = false;
 }

 if(!m_bJumping)
 {
 m_velocity.m_y = 5;

Chapter 9

[227]

 }
 else
 {
 m_velocity.m_y = -5;
 }

 handleMovement(m_velocity);
 }
 else
 {
 m_velocity.m_x = 0;
 if(m_dyingCounter == m_dyingTime)
 {
 ressurect();
 }
 m_dyingCounter++;

 m_velocity.m_y = 5;
 }
 handleAnimation();
}

As movement is such an important part of this class, there is a function that is
dedicated to handling it:

void Player::handleMovement(Vector2D velocity)
{
 // get the current position
 Vector2D newPos = m_position;

 // add velocity to the x position
 newPos.m_x = m_position.m_x + velocity.m_x;

 // check if the new x position would collide with a tile
 if(!checkCollideTile(newPos))
 {
 // no collision, add to the actual x position
 m_position.m_x = newPos.m_x;
 }
 else
 {
 // collision, stop x movement
 m_velocity.m_x = 0;
 }

Creating Conan the Caveman

[228]

 // get the current position after x movement
 newPos = m_position;

 // add velocity to y position
 newPos.m_y += velocity.m_y;

 // check if new y position would collide with a tile
 if(!checkCollideTile(newPos))
 {
 // no collision, add to the actual x position
 m_position.m_y = newPos.m_y;
 }
 else
 {
 // collision, stop y movement
 m_velocity.m_y = 0;

 // we collided with the map which means we are safe on the
 ground,
 // make this the last safe position
 m_lastSafePos = m_position;

 // move the safe pos slightly back or forward so when
 resurrected we are safely on the ground after a fall
 if(velocity.m_x > 0)
 {
 m_lastSafePos.m_x -= 32;
 }
 else if(velocity.m_x < 0)
 {
 m_lastSafePos.m_x += 32;

 }

 // allow the player to jump again
 m_bCanJump = true;

 // jumping is now false
 m_bJumping = false;
 }

Chapter 9

[229]

Notice that x and y checking has been split into two different parts;
this is extremely important to make sure that an x collision doesn't
stop y movement and vice versa.

The m_lastSafePos variable is used to put the player back into a safe spot after
they are respawned. For example, if the player was to fall off the edge of the
platform in the following screenshot and therefore land on the spikes below,
he would be respawned at pretty much the same place as in the screenshot:

Finally, the handle input function now sets Boolean variables for moving to the
right-hand side and left-hand side or jumping:

void Player::handleInput()
{
 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_RIGHT) &&
 m_position.m_x < ((*m_pCollisionLayers->begin())->getMapWidth()
 * 32))
 {
 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_A))
 {
 m_bRunning = true;
 }
 else
 {
 m_bRunning = false;
 }

Creating Conan the Caveman

[230]

 m_bMoveRight = true;
 m_bMoveLeft = false;
 }
 else if(TheInputHandler::Instance()
 ->isKeyDown(SDL_SCANCODE_LEFT) && m_position.m_x > 32)
 {
 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_A))
 {
 m_bRunning = true;
 }
 else
 {
 m_bRunning = false;
 }

 m_bMoveRight = false;
 m_bMoveLeft = true;
 }
 else
 {
 m_bMoveRight = false;
 m_bMoveLeft = false;
 }

 if(TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_SPACE)
 && m_bCanJump && !m_bPressedJump)
 {
 TheSoundManager::Instance()->playSound("jump", 0);
 if(!m_bPressedJump)
 {
 m_bJumping = true;
 m_bCanJump = false;
 m_lastSafePos = m_position;
 m_bPressedJump = true;
 }
 }

 if(!TheInputHandler::Instance()->isKeyDown(SDL_SCANCODE_SPACE)
 && m_bCanJump)
 {
 m_bPressedJump = false;
 }
}

Chapter 9

[231]

This is all fairly self-explanatory apart from the jumping. When the player jumps,
it sets the m_bCanJump variable to false, so that on the next loop the jump will not
be called again, due to the fact that jump can only happen when the m_bCanJump
variable is true; (landing after the jump sets this variable back to true).

Possible additions
It wouldn't be hard to improve on Conan the Caveman's gameplay; increasing
enemy and trap numbers would make the game significantly more exciting to play.
The game could also benefit from some height to the levels so that players could
really explore the map (Metroid style). Other gameplay improvements could include
moving platforms, ladders, and bosses.

Summary
Our reusable framework has proved its worth; two games have been created with
minimal code duplication.

This chapter looked at scrolling a tile map using the position of the player along
with collision detection. Tile-map collision was also covered, along with the
important point of splitting x and y movement for effective movement in a platform
game. Conan the Caveman is a great starting point for any other 2D game such
as a scrolling beat-em-up or even a merging of this chapter and the last to create a
platform shooter.

I hope that by now you have a good understanding of how to use SDL2.0 along
with C++ to create games and how to effectively break game code apart to create
a reusable framework. This is only the start and there are many more game-
programming adventures ahead. Good luck!

Index
A
abstract base classes

using 60
Alien Attack game

about 191, 192
additions 192
basic objects, setting up 196
bullets, handling 207
collisions, dealing with 211
sound SDL_mixer extension, using 193
tips 216

AnimatedGraphic class 126, 154

B
Base64 decoder 171
base64 encoding 162
basic game objects

enemy types 204
GameObject base class 196, 198
player object 200-204
scrolling background, adding 205
SDLGameObject class, renaming to

ShooterObject 199, 200
setting up 196

boolfullscreen parameter 27
Bullet class 218
BulletHandler class 209
bullet handling

BulletHandler class 209, 210
scrolling background, adding 207
types 207, 209

C
C++11 standard 198

Camera class 222, 223
camera-controlled map 224, 225
checkCollideTile function 220
checkEnemyPlayerBulletCollision

functions 214
checkPlayerEnemyCollision functions 214
clean function 20
CollisionManager Class 214
collisions

CollisionManager Class, creating 214
dealing with 211-214

CollisonManager class 218
Conan the Caveman game

about 217
additions 231
basic game objects, setting up 218
bullet collisions 218
Camera class 222, 223
camera-controlled map 224, 225
game objects 219
map collisions 219
Player class 225-231
screenshot 218
ShooterObject, renaming as

PlatformerObject 219-222

D
Data-driven Design 131
destination rectangle

about 32-35
images, flipping 37, 38
sprite sheet, animating 35, 37

draw function 43, 66, 210

[234]

E
Enter key 108
enum attribute 94

F
Finite State Machines. See FSM
fixed frames per second. See FPS
FPS 77, 78
FSM

about 103
game states, base class 103-106
implementing 103-109

G
game

code, functioning 20
Hello SDL code, breaking up 18-20
structure 17, 18

Game class
about 21-25, 47
fullscreen SDL 26, 27

Game::getGameHeight functions 175
Game::getGameWidth 175
Game::handleEvents function 108
Game::init function 84, 108
GameObject class 51
GameObject: class 129
GameObject classes

altering 138, 139, 140
game objects

steps, sumarizing 62-67
game objects movement

acceleration, adding 77
Cartesian coordinate system 70
setting up 70
vector 70, 72
Vector2D class, adding 75
velocity, adding 76, 77

game over state
loading 153, 154

GameOverState class 125, 128
gamepad input 80
Game::setCurrentLevel function 204
GameState.h 103

game states
about 101
switching ways 101, 102

getButtonState function 92
getRenderer function 65

H
Hello SDL

about 13, 14
initialisation flags 16
overview 14, 15
renderer flags 17

I
inheritance

about 49
derived classes 61
functionality example 49-55
possible performance penalties 62
result tips 61
using 61

init function 23
initialisation flags, SDL

about 16
SDL_INIT_AUDIO 16
SDL_INIT_EVERYTHING 16
SDL_INIT_HAPTIC 16
SDL_INIT_JOYSTICK 16
SDL_INIT_NOPARACHUTE 16
SDL_INIT_TIMER 16
SDL_INIT_VIDEO 16

input handling
about 79
axis movement, handling 84-90
input handler class, creating 79
joystick 80
joystick button input, dealing with 91-93
mouse events, handling 93
summary 98, 99

Instance function 46
int flags parameter 27

J
joy parameter 85
joystick button input 91

[235]

Joystick Control Panel property 80
joysticks

events 80
initializing 81-84

L
Level class 166
LevelParser class

creating 168-170
LevelParser::parseLevel 212
load function 154, 195

M
MainMenuState class 148, 150
m_bCanJump variable 231
MenuButton class 147
MenuState.cpp file 104
menu states

callback functions 114, 116
fuction parameters 114
game over state, creating 123-129
implementing 110-114
temporary play state,

implementing 117-123
m_lastSafePos variable 229
mouse events

button events, handling 93-95
handling 93
keyboard input, implementing 96, 97
motion events, handling 95, 96

N
non-player character. See NPC
NPC 49

O
Object Factories

about 134, 135
Distributed Factories, using 135-138

Object Layer 182
object layers

ObjectLayer class, developing 184-188
parsing 182, 183

object-oriented programming. See OOP
onEnter function 107, 127, 154
onExit function 107
OOP 49

P
parseLevel function 168, 185
parseObjects function 145, 146, 186
pause state

loading 152, 153
PauseState.cpp file 121
Player class 225-231
Player::update function 90, 225
Player::update function 204
playSound or playMusic functions 196
play state

loading 150, 151
PlayState class 123
polymorphism

about 55
implementing 55-60

pState parameter 107

Q
Quadtree 216
quit function 83

R
registerType function 136
renderer flags, SDL

SDL_RENDERER_ACCELERATED 17
SDL_RENDERER_PRESENTVSYNC 17
SDL_RENDERER_SOFTWARE 17
SDL_RENDERER_TARGETTEXTURE 17

render function 102, 180
Rich Text Format. See RTF
RTF 7

S
ScrollingBackground class 205
SDL

about 5
drawing 29
need for 6

[236]

SDL 1.2
extensions 7

SDL 1.2 extensions
about 7
SDL_image 7
SDL_mixer 7
SDL_net 7
SDL_rtf 7
SDL_ttf 7

SDL 2.0
about 6, 7
SDL 1.2 extensions 7

SDL 2.0 Roadmap 6
SDL_CreateRenderer function 14
SDL_CreateWindow function 27
SDL drawing

about 29
images, obtaining 29
texture, creating 30, 31

SDL_image
installing 38-40
using 40, 41

SDL_INIT_AUDIO flag 16
SDL_INIT_EVERYTHING flag 16
SDL_INIT_HAPTIC flag 16
SDL_INIT_JOYSTICK flag 16
SDL_INIT_NOPARACHUTE flag 16
SDL_INIT_TIMER flag 16
SDL_INIT_VIDEO flag 16
SDL_JOYAXISMOTION event 88
SDL_JoyBallEvent 80
SDL_JoyButtonEvent 80
SDL_JoyHatEvent 80
SDL joystick events

about 80, 81
SDL_JoyAxisEvent 80
SDL_JoyBallEvent 80
SDL_JoyButtonEvent 80
SDL_JoyHatEvent 80

SDL_MouseButtonEvent 93
SDL Mouse Event

SDL_MouseButtonEvent 93
SDL_MouseMotionEvent 93
SDL_MouseWheelEvent 93

SDL_MouseMotionEvent 93
SDL_MouseWheelEvent 93
SDL_RENDERER_ACCELERATED flag 17

SDL_RendererFlip value
SDL_FLIP_HORIZONTAL 38
SDL_FLIP_NONE 38
SDL_FLIP_VERTICAL 38

SDL_RENDERER_PRESENTVSYNC
flag 17

SDL_RENDERER_SOFTWARE flag 17
SDL_RENDERER_TARGETTEXTURE

flag 17
SDL setup, in Visual C++ Express 2010

about 8
library, retrieving 8
linking 10-12
Mercurial, using 8
SDL 2.0 repository, building 8-10
SDL 2.0 repository, cloning 8, 10

SDL_WasInit() function 16
SDL_WINDOW_BORDERLESS

function 26
SDL_WindowFlags function 26
SDL_WindowFlags functions

SDL_WINDOW_BORDERLESS 26
SDL_WINDOW_FOREIGN 26
SDL_WINDOW_FULLSCREEN 26
SDL_WINDOW_HIDDEN 26
SDL_WINDOW_INPUT_FOCUS 26
SDL_WINDOW_INPUT_GRABBED 26
SDL_WINDOW_MAXIMIZED 26
SDL_WINDOW_MINIMIZED 26
SDL_WINDOW_MOUSE_FOCUS 26
SDL_WINDOW_OPENGL 26
SDL_WINDOW_RESIZABLE 26
SDL_WINDOW_SHOWN 26

SDL_WINDOW_FOREIGN function 26
SDL_WINDOW_FULLSCREEN flag 27
SDL_WINDOW_FULLSCREEN function 26
SDL_WINDOW_HIDDEN function 26
SDL_WINDOW_INPUT_FOCUS

function 26
SDL_WINDOW_INPUT_GRABBED

function 26
SDL_WINDOW_MAXIMIZED function 26
SDL_WINDOW_MINIMIZED function 26
SDL_WINDOW_MOUSE_FOCUS

function 26
SDL_WINDOW_OPENGL function 26
SDL_WINDOW_RESIZABLE function 26

[237]

SDL_WINDOW_SHOWN function 26
setCallbacks function 152
Simple DirectMedia Layer. See SDL
SoundManager class 196
sound SDL_mixer extension

SoundManager class, creating 193-196
using 193

source rectangle
about 32-35
images, flipping 37, 38
sprite sheet, animating 35, 37

states, XML file
game over state, loading 153, 154
menu state, loading 147-149
parsing 140-146
pause state, loading 152, 153
play state, loading 150, 151

T
texture manager

about 42
creating 42-45
using, as singleton 46

TextureManager class 42
Tiled application 160-164
tiled map editor 157
tile layer

parsing 171-174
TileLayer class 224
TileLayer update function 175
tile map

about 157-159
drawing 165, 175-180
LevelParser class, creating 168-170
parsing 165, 166
scrolling 180, 181
TileLayer class, creating 167

tile layer, parsing 171-174
tilesets, parsing 170, 171

tilesets
parsing 170, 171

TortoiseHg Workbench window 8
type function 214

U
uncompress function 174
update function 45, 116, 129, 210

V
vector

about 70
multiplying, by scalar number 73
normalizing 74
sclar number, dividing by 74
substration methods 73
two vectors, adding 72
using 71

Visual C++ Express 2010
SDL, setting up 8

X
Xbox 360 controller 81
XML file

about 131, 132
basic XML structure 132-134
menu state, loading 147-149
other states, loading 150
states, parsing 140-147

Z
zlib compression algorithm 162

Thank you for buying
SDL Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Torque 3D Game Development
Cookbook
ISBN: 978-1-84969-354-7 Paperback: 380 pages

Over 80 practical recipes and hidden gems for getting
the most out of the Torque 3D game engine

1.	 Clear step-by-step instruction and practical
examples to advance your understanding of
Torque 3D and all of its sub-systems

2.	 Explore essential topics such as graphics,
sound, networking and user input

3.	 Helpful tips and techniques to increase the
potential of your Torque 3D games

jQuery Game Development
Essentials
ISBN: 978-1-84969-506-0 Paperback: 244 pages

Learn how to make fun and addictive multi-platform
games using jQuery

1.	 Discover how you can create a fantastic RPG,
arcade game, or platformer using jQuery!

2.	 Learn how you can integrate your game with
various social networks, creating multiplayer
experiences and also ensuring compatibility
with mobile devices.

3.	 Create your very own framework, harnessing
the very best design patterns and proven
techniques along the way.

Please check www.PacktPub.com for information on our titles

Learning Stencyl 3.x Game
Development: Beginner's Guide
ISBN: 978-1-84969-596-1 Paperback: 336 pages

A fast-paced, hands-on guide for developing
a feature-complete video game on almost any
desktop computer, without writing a single line
of computer code

1.	 Learn important skills that will enable you to
quickly create exciting video games, without
the complexity of traditional programming
languages

2.	 Find out how to maximize potential profits
through licencing, paid-sponsorship and in-
game advertising

3.	 Explore numerous step-by-step tutorials that
will guide you through the essential features of
Stencyl's powerful game-development toolkit

HTML5 Game Development with
GameMaker
ISBN: 978-1-84969-410-0 Paperback: 364 pages

Experience a captivating journey that will take you
from creating a full-on shoot'em up to your first social
web browser game

1.	 Build browser-based games and share them
with the world

2.	 Master the GameMaker Language with easy to
follow examples

3.	 Every game comes with original art and audio,
including additional assets to build upon each
lesson.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with SDL
	Why use SDL?
	What is new in SDL 2.0?
	Migrating SDL 1.2 extensions

	Setting up SDL in Visual C++ Express 2010
	Using Mercurial to get SDL 2.0 on Windows
	Cloning and building the latest SDL 2.0 repository

	I have the library; now what?

	Hello SDL
	An overview of Hello SDL
	SDL initialization flags
	SDL renderer flags

	What makes up a game
	Breaking up the Hello SDL code
	What does this code do?

	The Game class
	Fullscreen SDL

	Summary

	Chapter 2: Drawing in SDL
	Basic SDL drawing
	Getting some images
	Creating an SDL texture

	Source and destination rectangles
	Animating a sprite sheet
	Flipping images

	Installing SDL_image
	Using SDL_image

	Tying it into the framework
	Creating the texture manager
	Using texture manager as a singleton

	Summary

	Chapter 3: Working with Game Objects
	Using inheritance
	Implementing polymorphism
	Using abstract base classes
	Should we always use inheritance?
	Could the same thing be achieved with a simpler solution?
	Derived classes should model the "is a" relationship
	Possible performance penalties

	Putting it all together

	Summary

	Chapter 4: Exploring Movement
and Input Handling
	Setting up game objects for movement
	What is a vector?
	Some common operations
	Addition of two vectors
	Multiply by a scalar number
	Subtraction of two vectors
	Divide by a scalar number
	Normalizing a vector

	Adding the Vector2D class
	Adding velocity
	Adding acceleration

	Creating fixed frames per second
	Input handling
	Creating our input handler class
	Handling joystick/gamepad input
	SDL joystick events
	Initializing joysticks

	Listening for and handling axis movement
	Dealing with joystick button input
	Handling mouse events
	Using mouse button events
	Handling mouse motion events

	Implementing keyboard input
	Wrapping things up

	Summary

	Chapter 5: Handling Game States
	A simple way for switching states
	Implementing finite state machines
	A base class for game states
	Implementing FSM

	Implementing menu states
	Function pointers and callback functions
	Implementing the temporary play state
	Pausing the game
	Creating the game over state

	Summary

	Chapter 6: Data-driven Design
	Loading XML files
	Basic XML structure

	Implementing Object Factories
	Using Distributed Factories

	Fitting the factory into the framework
	Parsing states from an XML file
	Loading the menu state from an XML file
	Loading other states from an XML file
	Loading the play state
	Loading the pause state
	Loading the game over state

	Summary

	Chapter 7: Creating and Displaying
Tile Maps
	What is a tile map?
	Getting familiar with the Tiled application
	Parsing and drawing a tile map
	Creating the TileLayer class
	Creating the LevelParser class
	Parsing tilesets
	Parsing a tile layer
	Drawing the map

	Scrolling a tile map
	Parsing object layers
	Developing the ObjectLayer class

	Summary

	Chapter 8: Creating Alien Attack
	Using the SDL_mixer extension for sound
	Creating the SoundManager class

	Setting up the basic game objects
	GameObject revamped
	SDLGameObject is now ShooterObject
	Player inherits from ShooterObject
	Lots of enemy types
	Adding a scrolling background

	Handling bullets
	Two types of bullets
	The BulletHandler class

	Dealing with collisions
	Creating a CollisionManager class

	Possible improvements
	Summary

	Chapter 9: Creating Conan the Caveman
	Setting up the basic game objects
	No more bullets or bullet collisions
	Game objects and map collisions
	ShooterObject is now PlatformerObject
	The Camera class
	Camera-controlled map
	The Player class

	Possible additions
	Summary

	Index

